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Abstract

We study settings where each agent can exert costly effort that creates
nonrival, heterogeneous benefits for some of the others. For example, munici-
palities can forgo consumption to reduce pollution. How do the prospects for
efficient cooperation depend on asymmetries in the effects of players’ actions?
We approach this question by analyzing a network that describes the marginal
benefits agents can confer on one another. The first set of results explains how
the largest eigenvalue of this network measures the marginal gains available
from cooperating; as an application, we describe the players whose participa-
tion is essential to achieving any Pareto improvement on an inefficient status
quo. Next, we examine mechanisms all of whose equilibria are Pareto efficient
and individually rational; an outcome is called robust if it is an equilibrium
outcome in every such mechanism. Robust outcomes exist and correspond to
the Lindahl public goods solutions. The main result is a characterization of
effort levels at these outcomes in terms of players’ centralities in the benefits
network. It entails that an outcome is robust if and only if agents contribute
in proportion to how much they value the efforts of those who help them.
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1 Introduction

An economy can be thought of as a network in which the nodes are agents and
links among them represent heterogeneous opportunities for exchange or cooperation.
This paper argues that studying properties of such a network – how dense it is, how
“central” various agents are in it – yields insights about issues such as the efficiency
and fragility of an economic system, as well as its market outcomes.

We develop this conceptual point in a model of a public goods economy: one in
which each agent can incur a private cost to take an action – e.g., reducing pollu-
tion – that creates nonrival but heterogeneous benefits for others. To fix ideas and
demonstrate the network we will focus on, suppose there are three towns: X, Y and
Z, located as shown in Figure 1a, each generating air and water pollution during pro-
duction. The air pollution of a town affects only those east of it due to the prevailing
wind. A river flows westward, so Z’s water pollution affects X but not Y, which is
located away from the river. Each town, i, can forgo ai ≥ 0 units of production at a
net cost of a dollar per unit,1 reducing its pollution and creating positive externalities
for others affected by that pollution. Let ui(aX, aY, aZ) denote i’s payoff.

prevailing wind

Town 
X

Town 
Y

Town 
Z

river flow

(a) Town locations.

Town 
X

Town 
Y

Town 
Z

(b) Benefits network.

Figure 1: Town i benefits from j’s pollution reduction when wind or water carries
pollution from j to i; let Bij = ∂ui/∂aj be the marginal benefit to i from j’s reduction;
these numbers may vary with the action profile, (aX , aY , aZ).

Suppose that the status quo at which everyone chooses ai = 0 is not Pareto efficient
(as will typically be the case when externalities are not internalized). To obtain a
Pareto improvement, each town is willing to commit to an institution – a mechanism –
in which it reduces pollution and others reciprocate.2 Whose participation is essential
to achieving a Pareto improvement on the status quo? Is the system fragile, in that
the exclusion of one or a few agents destroys the potential for cooperation? Of the
many Pareto efficient outcomes, can we consider some especially robust? If so, how
do the robust solutions depend on the economic environment? We argue that insight
into these questions can be gained by studying a benefits network, in which the links
represent the marginal benefits players can confer on one another (Figure 1b).

1That is, the value of forgone production outweighs private environmental benefits. The net
marginal cost is normalized to 1 in this example for convenience.

2We focus on favor-trading through the provision of public goods and abstract from side transfers
of private goods. This keeps the modeling clean and is relevant for many practical negotiations.
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Our first set of results focuses on a new measure of the marginal return to con-
certed investment in public goods: the largest eigenvalue of the benefits network.3

These results have some immediate implications. First, cycles in the benefits net-
work (e.g., X can help Y, who can help Z, who can help X) are critical to finding a
Pareto improvement on a given outcome. The network’s largest eigenvalue quantifies
the marginal returns available from exploiting such cycles. For instance, agents can
achieve a Pareto improvement on the status quo of zero effort if and only if the bene-
fits matrix evaluated at that status quo has a largest eigenvalue exceeding 1. Second,
there is a simple algorithm to find the players who are essential to a negotiation –
in the sense that without their participation, there is no Pareto improvement on the
status quo. They are the ones whose removal causes a sufficiently large disruption of
cycles in the benefits network, as measured by the decrease in its largest eigenvalue.

When Pareto improvements on the status quo do exist, there is a question of
how to implement them. We thus turn to the problem faced by a designer of a
mechanism that the towns will use to address their collective action problem.4 The
designer wants a reliable mechanism for determining levels of effort – one such that,
under whatever preferences the agents might later have, all Nash equilibria in the
mechanism will be Pareto efficient and unanimously preferred to the status quo. We
focus on the (nonempty) class of robust effort profiles: ones that are equilibrium
outcomes of every reliable mechanism. These turn out to be precisely the Lindahl
outcomes, which are analogues of Walrasian market allocations under individualized
pricing of public goods.5 There is an alternative way to look at these outcomes: if
the designer wants to minimize the equilibrium selection problem and find a reliable
mechanism with as few equilibria as possible (e.g., with a unique one if possible), she
must choose a mechanism that yields precisely the Lindahl outcomes in equilibrium.6

The main result characterizes the Lindahl outcomes in terms of the benefits net-
work. It states that a nonzero action profile is a Lindahl outcome if and only if, for
all players i,

ai =
∑

j 6=iBij aj, (1)

whereBij measures the marginal value to i of j’s effort at the outcome a. Thus, players
contribute in proportion to how much they value the efforts of those who help them.
We will deduce two main practical consequences from this characterization. First,
it is the benefits an agent receives, rather than those he can confer, that determine
his level of effort at a robust outcome. Second, the players contributing the most are
those who are most “central” in the benefits network, in the sense that they receive
strong direct and indirect benefit flows from others.

3That is, the largest eigenvalue of the matrix with entries Bij for i 6= j and zeros on the diagonal.
4This designer could represent the towns themselves at an ex ante stage where they make the

rules for their future interactions.
5Imagine that each agent must pay a personalized tax on each unit provided of public goods that

he values; the tax is specific both to the good and to the agent. He also receives the taxes others
pay for the public good he supplies. A Lindahl outcome is a profile of public goods provision that
is optimal for each agent subject to budget balance at the given tax schedule. A formal definition
appears in Section 4.2.

6Details appear in Section 4. For the formal results, we impose a continuity requirement on the
reliable mechanisms and some conditions on the space of possible preferences.
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The remainder of the introduction describes the key concepts and results in more
detail, and also discusses connections to prior work.

The Benefits Network Assume that ∂ui
∂ai

(a) < 0 for all action profiles a and all

agents i.7 For i 6= j, define

Bij =
∂ui/∂aj
−∂ui/∂ai

.

This quantity (which depends on the action profile) is i’s marginal rate of substitution
between decreasing own effort and receiving help from j. In other words, it is how
much i values the help of j, measured in the number of units of effort that i would
be willing to put forth in order to receive one unit of j’s effort. Let Bii = 0 for all
i. We write B(a) for the matrix with these entries evaluated at a. This matrix can
also be represented as a directed, weighted graph, where the towns are the nodes and
the links correspond to strictly positive entries of the matrix. For instance, the link
directed to Y from X has weight BYX(a), which measures the marginal benefit that
accrues to Y when X increases its action at a profile a. The network corresponding
to our example is depicted in Figure 1b; links are drawn only for nonzero weights.
There is a link to town i from town j if pollutants flow in that direction, allowing j
to provide benefits to i by reducing pollution.

Pareto Efficient Outcomes and the Magnitude of Inefficiency We begin with
basic results on diagnosing and measuring inefficiency; these results do not depend
on a selection of a particular Pareto improvement on the status quo, and do not
involve Lindahl outcomes.

Proposition 1 in Section 3.1 shows that an interior action profile a is Pareto
efficient if and only if 1 is a largest eigenvalue of B(a). The reason for this is as
follows. The matrix B(a) is a linear system describing how investments translate into
returns at the margin. Consider a particular sequence of investments: in Figure 1b,
Y can increase his action slightly and provide a marginal benefit to Z. Then Z, in
turn, can “pass forward” some of the resulting increase in his utility, investing effort
to help X. Finally, X can similarly create benefits for Y, completing a cycle. If they
can all receive back more than they invest in such an adjustment, then the starting
point is not Pareto efficient. It is precisely in such cases that the linear system B(a)
is “expansive”: there is scope for everyone to get out more than they put in. And
expansive systems are characterized by having a largest eigenvalue exceeding 1. If
the largest eigenvalue of B(a) is less than 1, then everyone can be made better off by
reducing investment. As a result, the interior Pareto efficient outcomes have a benefits
matrix with a largest eigenvalue exactly equal to 1. Moreover, a Pareto improvement
on the status quo outcome of a = 0 exists if and only if B(0) has a largest eigenvalue
exceeding 1. Section 3.1 derives these results. Section 3.4.2 formalizes the idea that
cycles in the benefits network are crucial to Pareto improvements.

7That is, each agent has (more than) exhausted the net benefits available by unilaterally increas-
ing his own action. This restricts the analysis to the interesting regime where there is a collective
action problem.
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A substantive implication of this result is that it allows us to analyze, in terms
of the benefits network, which agents are essential to successful negotiations and
to give a simple matrix criterion for finding them (Sections 3.4.4 and 3.4.5). These
crucial agents are ones whose removal breaks important cycles in the benefits network,
dropping the spectral radius of B(a) from above 1 to below 1. Section 8.1 applies
these results in analyzing the temptation to free-ride.

Beyond characterizing Pareto efficiency, we would like to quantify the magnitude of
inefficiency at the margin – defined loosely as the return on investment in public goods
per unit of cost. If agents’ utilities are denominated in a transferable numeraire (say,
dollars), then it is easy to quantify this: just find the small change in contribution
levels that maximizes the ratio (ρ) of overall marginal benefits to overall marginal
costs in dollars. According to Coasian logic, all players agree that such an adjustment
is the best one. There is an second way of looking at this measure of inefficiency via a
hypothetical friction: suppose that to sacrifice $1 for the sake of pollution reduction,
a town must also waste an additional $t (e.g. due to polluting industries’ lobbying).
That makes the real cost per unit of effective contribution equal to τ = 1 + t. If the
collective return to a unit of effort, ρ, were equal to the coefficient τ then – given the
frictions – the players’ actions would be Pareto efficient.8 Thus, we can equivalently
define the returns on on investment ρ at an outcome as the tax coefficient τ that
would be necessary to render that outcome Pareto efficient.

If agents’ preferences are not quasilinear in any numeraire, utility is no longer
transferable and the first approach to quantifying inefficiency no longer makes sense.
We show, however, that the second way – the one based on a hypothetical friction –
is portable easily to a world without such a numeraire (or without the possibility of
transfers at all). Indeed, Section 3.2 derives that the measure of inefficiency defined
via τ is equal to the largest eigenvalue of the benefits matrix. Therefore, that invariant
is useful not only for diagnosing inefficiency but also for rigorously quantifying its
magnitude. Section 3.3 gives another sense in which the largest eigenvalue of the
benefits matrix measures inefficiency – one based on marginal improvements yielding
the same returns on investment for everyone. Section 3.4.6 discusses implications
when exact values of marginal costs and benefits are not known, but bounds are
available.

Characterizing the Lindahl Outcomes through Network Centrality Theorem 1
in Section 4 formally establishes an equivalence between robust outcomes as defined
in our discussion above and the Lindahl public goods solution. The main result of
the paper characterizes the Lindahl outcomes in terms of eigenvector centrality in the
benefits network. We now outline this result.

What is Eigenvector Centrality? In general, suppose we are given a network, repre-
sented by a matrix M, where the nonnegative number Mij captures the strength of
the link ij (and is zero if that link is absent); this may differ from the strength of the

8In other words, whatever friction is inducing the inefficiency in the initial economy is comparable
to a tax rate of t on contributions.
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link ji. A centrality measure is an assignment of a number to each node measuring
how important that node is based on the connections in the network.9

A widely studied measure is one that takes as a starting point the notion that an
important node is one that is connected to other important nodes. A (right-hand)
eigenvector centrality of the network M is simply a nonnegative, nonzero vector e
whose entries sum to 1, with the property that for each i,

ei = γ
∑
j

Mijej (2)

for some proportionality constant γ > 0. If a vector e satisfying these conditions
exists and is uniquely determined, then we say ei is the eigenvector centrality of
node i according to matrix M. The equation says that the centrality of agent i is
proportional to a weighted sum of the centralities of others, where ej is weighted by
Mij – the strength of the connection ij. It can be shown that the most central agents
are the ones with many paths leading to them in the network M (see Section 5.5 for
a precise statement of this).

Perhaps the most famous application of this idea is the PageRank measure intro-
duced as a part of Google’s early algorithms to rank search results (Brin and Page,
1998). In that context, the nodes are web pages and Mij is the number of hyperlinks
that go to page i from page j, normalized by the total number of hyperlinks on page
j. Then equation (2) says that a page is important if it is linked to by other impor-
tant pages. Other applications include identifying those sectors in the macroeconomy
that contribute the most to aggregate volatility via a network of intersectoral linkages
(Acemoglu et al., 2012); the measurement of intellectual influence (Palacios-Huerta
and Volij, 2004); and many others. We discuss the prior economic applications most
closely related to our work – by Ballester, Calvó-Amengol, and Zenou (2006) and
by Bramoullé, Kranton, and d’Amours (2011) – in the section on related literature
below.

Centrality measures are intuitive and have useful mathematical properties, so it
is worth knowing when they can be useful in economic analysis. In all prior work
we are aware of, conditions such as (2) are obtained in economic models by positing
a setting with particular parametric structure (linear-quadratic, Cobb-Douglas, etc.)
on preferences or production. We find a nonparamteric connection between network
centrality and an economic solution concept.

The Characterization Result. In our main result, we give a full characterization of
the Lindahl outcomes in terms of eigenvector centrality.

An eigenvector centrality action profile is defined by the property that

ai =
∑
j

Bij(a)aj. (3)

for every i: player i’s action is the weighted sum of actions of other players j, where

9There are very many ways to define such a measure, depending on the interpretation of the
network and the notion of importance that are relevant in a given context. A survey of many
measures with references is provided by Jackson (2008, Section 2.2.4).
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the weight on aj captures how much i cares about the effort of j at the margin.
This condition states that the action profile itself is a right-hand eigenvector of the
marginal benefits matrix with eigenvalue10 equal to 1 – and this is intimately related
to the efficiency characterization discussed above.

The main result of the paper, Theorem 2 in Section 5.2, asserts that an action
profile is a Lindahl outcome if and only if it is an eigenvector centrality action profile.
Intuitively, this means that the Lindahl outcomes are characterized by the condition
that the agents contributing a lot to the public goods are the ones who are benefiting
a lot, at the margin, from the efforts of others who are contributing.

Applications and Consequences. The conceptual import of the characterization result
is that it provides a general connection between efficient, robust outcomes of public
goods problems and the theory of network centrality. We now discuss some more
concrete consequences.

The first application of the main theorem is solving for the Lindahl outcome in
an environment with global public goods, where each agent’s benefits depend only on
the sum of others’ actions (Section 5.3). Here we find a very simple characterization
of Lindahl outcomes: an agent contributes a fraction of the overall public good quan-
tity equal to his marginal rate of substitution between the public good and private
consumption.

Because the condition (3) involves B(a), which varies as a changes, we also build
intuition by considering (in Section 6) special cases where the fixed point defined by
(3) can be expressed explicitly in terms of an exogenous network that does not depend
on a. Substantively, the theme of these results is that it is the intensity of benefits
that an agent receives, and not of those he generates, that determine his effort level.
However, it is not just i’s own links in the benefits network that matter: chains of
benefits of the form “k helps j who helps i” are crucial to determining i’s centrality
in the benefits network, and thus i’s effort level at Lindahl outcomes. Proposition 5
in Section 5.5 relates such chains to Lindahl outcomes generally.

In studying these special cases, we also provide price-theoretic foundations for
three of the most important centrality measures that have been studied in the net-
works literature.

Related Work This paper is at the intersection of the theory of public goods pro-
vision and the theory of economic networks. A recent literature has studied Nash
equilibria of one-shot games in networks when best responses are linear in others’
actions and has related those equilibria to eigenvalue and centrality conditions. Key
papers include Ballester, Calvó-Amengol, and Zenou (2006) on skill investment with
externalities, and Bramoullé, Kranton, and d’Amours (2011) on local public goods;
they offer more comprehensive surveys of the literature.11 A fundamental contrast
is that our work focuses on institutions that implement Pareto efficient public goods

10In terms of equation (2), this definition of an eigenvector centrality action profile requires γ = 1.
11Most recently, Allouch (2012) has studied a network version of the setting introduced in the

seminal paper of Bergstrom, Blume, and Varian (1986) on the voluntary (static Nash) private
provision of public goods. Generalizing results of Bramoullé, Kranton, and d’Amours (2011), he
derives comparative statics of public goods provision using network centrality tools.
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outcomes, rather than on Nash behavior in the basic game without additional struc-
ture. From a technical perspective, these prior papers can be seen as addressing the
question: “In which economic settings are eigenvalue and network centrality meth-
ods useful?” We provide new insights on this that are complementary to the prior
work. Since the Lindahl solution is an analogue of a Walrasian equilibrium, the main
theorem of the present paper can be seen as making a general link between network
centrality and price equilibria.12 A final contrast is that our main characterization
result does not impose functional form assumptions on preferences.

There is a large literature in implementation theory on game forms that yield
Walrasian and Lindahl outcomes. Samuelson (1954) doubted that the price-theoretic
public goods solutions first contemplated by Wicksell (1896) and Lindahl (1919) could
be implemented despite agents’ incentives to manipulate a social institution. This in-
spired the early literature on implementation theory and mechanism design, with
Groves and Ledyard (1977) showing that a game could be designed yielding Pareto
efficient public goods provision in every Nash equilibrium. Key papers in the subse-
quent literature on implementing Walrasian and Lindahl outcomes include Hurwicz
(1979a), Hurwicz (1979b), and Hurwicz, Maskin, and Postlewaite (1995). A broad
survey is presented by Jackson (2001). The paper most important to us in this line
of work is Hurwicz (1979a) who first suggested strategic foundations for Lindahl out-
comes based on more primitive criteria – Pareto efficiency and individual rationality.
We rely on the insights of this paper to establish what makes Lindahl outcomes special
in our world.13

Complementary foundations for Lindahl outcomes based on equilibria of bargain-
ing games are offered by Dávila, Eeckhout, and Martinelli (2009) and Penta (2011);
these works are part of a broader literature on Walrasian bargaining – see Yildiz
(2003) and Dávila and Eeckhout (2008).

The Plan of the Paper Section 2 lays out the basic assumptions and notation.
Section 3 collects all results on efficiency and on measuring inefficiency. Section 4
formally presents the implementation theory framework; defines the Lindahl solu-
tion; and states the theorem on its unique robustness. Section 5 presents the main
theorem, characterizing the Lindahl outcomes as the eigenvector centrality action
profiles. Section 6 considers special cases of the characterization to show how net-
work structure affects robust outcomes; this also yields new economic foundations
for three important network centrality measures. Section 7 ties up the theory; its
main purpose is to explain the proof of the characterization result. Finally, Section 8
discusses limitations and extensions.

12Du, Lehrer, and Pauzner (2012) connect market outcomes to a network centrality condition by
showing that locations on an unweighted graph can be ranked using the equilibrium prices of an
associated exchange economy in which agents have Cobb-Douglas utility functions.

13For technical reasons we must provide our own proofs; e.g., Hurwicz (1979a) assumes positive
endowments of all private goods, an assumption that does not have a reasonable analogue in our
setting.
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2 Framework

2.1 The Environment

Each member i of a set N = {1, 2, . . . , n} of players (or agents) simultaneously chooses
an effort level, or action14, ai ∈ R+. Taking a higher action should be interpreted
as doing more of something that helps the other agents – for instance, mitigating
pollution. Each player has a utility function ui : Rn

+ → R; player i’s payoff when the
action profile a is played is ui(a).

2.2 Main Assumptions

Unless otherwise noted, the following assumptions are maintained throughout the
paper.

Each ui : Rn
+ → R is concave and continuously differentiable. The main substan-

tive assumptions about the payoffs are:

Assumption 1 (Costly Actions). Each player finds it costly to invest effort, holding
others’ actions fixed: ∂ui

∂ai
(a) < 0 for any a ∈ Rn

+ and i ∈ N .

Assumption 2 (Positive Externalities). Increasing any player’s action level weakly
benefits all other players: ∂ui

∂aj
(a) ≥ 0 for any a ∈ Rn

+ whenever j 6= i.

Because the externalities are positive and nonrival, this is a public goods environ-
ment. Together, the two assumptions above make the setting a potential tragedy of
the commons. The unique Nash equilibrium of a game in which players choose their
actions ai entails that everyone contributes nothing – ai = 0 for each i – even though
other outcomes may Pareto dominate this one.

Two additional technical assumptions are useful:

Assumption 3 (Connectedness of Benefits). For all a ∈ Rn
+, if M is a nonempty

proper subset of N , then there exist i ∈ M and j /∈ M (which may depend on a)
such that ∂ui

∂aj
(a) > 0.

This posits that it is not possible to find an outcome and partition society into
two nonempty groups such that, at that outcome, one group does not care about the
effort of the other at the margin.15

Finally, we assume that the set of points where everybody wants to scale up
all effort levels is bounded. To state this, we introduce a few definitions. Under a
preference profile u, action profile a′ ∈ Rn

+ Pareto dominates another profile a ∈ Rn
+

if ui(a
′) ≥ ui(a) for all i ∈ N , and the inequality is strict for some i. We say a′ strictly

Pareto dominates a if ui(a
′) > ui(a) for all i ∈ N . Finally, a is Pareto efficient if no

other action profile Pareto dominates it.

14We use R+ (respectively, R++) to denote to the set of nonnegative (respectively, positive) real
numbers. We write Rn+ (respectively, Rn++) for the set of vectors v with n entries such that each
entry vi is in R+ (respectively, R++). When we write an inequality between vectors, e.g. v > w,
that means the inequality holds coordinate by coordinate, i.e. vi > wi for each i ∈ N .

15See Section 8.4 for a discussion of extending the analysis when this assumption does not hold.
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Assumption 4 (Bounded Improvements). The set

{a ∈ Rn
+ : there is an s > 1 so that sa strictly Pareto dominates a}

is bounded.16

This assumption is necessary to keep the problem well-behaved and ensure the
existence of Lindahl equilibrium outcomes; see Section 7.1.

2.3 Key Notions

The Jacobian We write u = (u1, u2, . . . , un) for a profile of utility functions. To
keep track of the marginal costs and benefits of actions, we define the Jacobian,
J(a;u), to be the n-by-n matrix whose (i, j) entry is

Jij(a;u) =
∂ui
∂aj

(a).

The Benefits Matrix A close relative of the Jacobian turns out to be useful. The
benefits matrix B(a;u) is defined as follows:

Bij(a;u) =

{
Jij(a;u)

−Jii(a;u) if i 6= j

0 otherwise.

As discussed in the introduction, when i 6= j, the quantity Bij(a;u) is i’s marginal
rate of substitution between decreasing own effort and receiving help from j. In other
words, it is how much i values the help of j, measured in the number of units of effort
that i would be willing to put forth in order to receive one unit of j’s effort.

Suppose u satisfies the assumptions of Section 2.2. Since Jii(a;u) < 0 by Assump-
tion 1, this matrix is well-defined. By Assumption 2, it is entrywise nonnegative.
Assumption 3 is equivalent to the statement that this matrix is irreducible17 at every
a.

In discussing both the Jacobian and the benefits matrix, when there is no ambi-
guity about what u is, we suppress it.

The Spectral Radius (Largest Eigenvalue) For any nonnegative matrix M, we
define r(M) as the magnitude of a largest eigenvalue of M, also called the spectral
radius. That is,

r(M) = max{|λ| : λ is an eigenvalue of M},

where |λ| denotes the absolute value of the complex number λ. By the Perron-
Frobenius Theorem (see Section 2.4 below for a formal statement), any such matrix
has a real, positive eigenvalue equal to the maximum of all eigenvalues’ magnitudes.

16This condition is substantially weaker than assuming that the set of Pareto efficient outcomes
is bounded, which fails to be true in many reasonable environments.

17A matrix M is irreducible if it is not possible to find a nonempty subset S of indices so that
Mij = 0 for every i ∈ S and j /∈ S.
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Thus, we may equivalently think of r(M) as the largest eigenvalue of M on the real
line.

This quantity can be thought of as a single measure of how expansive a matrix is
as a linear operator – how much it can scale up vectors that it acts on. When applied
to the matrix B, it will quantify, in a sense we will make precise, the marginal gains
that can be generated by cooperating.

2.4 The Perron-Frobenius Theorem

The key mathematical tool we use is the Perron-Frobenius Theorem, a fundamental
result about nonnegative matrices which will be applied to analyze the benefits matrix
B(a). The facts stated in this section are necessary only for proofs, and skipping this
section (or any of the proofs in the paper) will not interrupt the flow. Nevertheless,
since this powerful theorem underlies so much of the analysis, we state it here for
easy reference.

Theorem (Perron-Frobenius18). Let M be an irreducible square matrix with no
negative entries and spectral radius r(M). Then:

(i) The real number r(M) is an eigenvalue of M.

(ii) There is a vector p (called a Perron vector) with only positive entries such that
Mp = r(M)p.

(iii) If v is a nonzero vector with nonnegative entries such that Mv = qv for some
q ∈ R, then v is a positive scalar multiple of p, and q = r(M).

Statement (i) says that there is always a real, positive eigenvalue of the matrix
M that is at least as large as any other eigenvalue. Statement (ii) says that this
eigenvalue, r(M), is associated with a strictly positive eigenvector, the Perron vector.
Statement (iii) says that any nonnegative eigenvector of the matrix M is a scalar
multiple of the Perron vector, and is associated with the special eigenvalue r(M).

Remark 1. Note that because a matrix has exactly the same eigenvalues as its
transpose, all the same statements are true, with the same eigenvalue r(M) = r(MT),
when we replace M by its transpose MT. This observation yields a left-hand Perron
eigenvector of M, i.e. a row vector w such that wM = r(M)w, which enjoys the
analogue of property (iii) in the theorem.

3 Efficiency and the Spectral Radius

The thesis of this paper is that we can gain insight about the economics of the public
goods problem by constructing, for any outcome a under consideration, a network in

18Meyer (2000, Section 8.3) has a comprehensive exposition of this theorem, its proof, and related
results. Conventions vary regarding whether the Perron-Frobenius Theorem encompasses all these
statements or just (i), but we will use the name as an umbrella term for all these facts; which one
is relevant will be clear from context.
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which the agents are nodes and the weighted links among them measure the marginal
benefits available by increasing actions. The matrix corresponding to this network is
B(a), defined in Section 2.3 above. (Throughout this section, we fix a profile u of
utility functions and suppress it in the notation for the Jacobian and benefits matrix.)

This section offers support for our thesis by showing that an important statistic of
this network – the size of the largest eigenvalue – can be used to diagnose whether an
outcome is Pareto efficient (Section 3.1), and if not, used to measure the magnitude
of the inefficiency. This measurement can be done in two ways: via a hypothetical
friction (Section 3.2) or by considering egalitarian marginal improvements (Section
3.3). After presenting these general results, we discuss interpretations (especially in
terms of cycles) and applications in Section 3.4.

3.1 A Characterization of Pareto Efficiency

Proposition 1. Under the assumptions in Section 2.2, an interior action profile
a ∈ Rn

++ is Pareto efficient if and only if the spectral radius of B(a) is 1.

Proof of Proposition 1: For any nonzero θ ∈ Rn
+, define P(θ), the Pareto problem

with weights θ as:

maximize
∑
i∈N

θiui(a) subject to a ∈ Rn
+.

It is well-known that concavity of all the ui guarantees that the set of Pareto
efficient points coincides with the set of solutions to this problem as θ ranges over all
the nonnegative vectors not equal to 0.

Suppose that an interior action vector a∗ is Pareto efficient, and therefore solves
P(θ) for a vector θ. Since a∗ is interior, that solution satisfies the system of first-
order conditions θJ(a∗) = 0. Let D(a) be a matrix with Dii(a) = −Jii(a) and zeros
off the diagonal. The diagonal entries of this matrix are positive at all a ∈ Rn

+ by
Assumption 1. By definition, B(a) = D(a)−1J(a) + I, where I is the n-by-n identity
matrix. Define γ = θD(a∗) and note that the following statements are equivalent:

θJ(a∗) = 0

[θD(a∗)][D(a∗)−1J(a∗)] = 0

γ[D(a∗)−1J(a∗) + I] = γ

γB(a∗) = γ.

Thus B(a∗) has an eigenvalue of 1 with corresponding nonnegative left-hand eigenvec-
tor γ. Since B(a∗) is irreducible by Assumption 3 and has only nonnegative entries,
the Perron-Frobenius Theorem applies to this matrix. That theorem (part (iii) of the
statement in Section 2.4) says that the only eigenvalue of B(a∗) that is associated
with a nonnegative eigenvector is the spectral radius itself. Thus, the spectral radius
of B(a∗) must be 1.

Conversely, if B(a∗) has a largest eigenvalue of 1, the Perron-Frobenius Theorem
guarantees the existence of a nonnegative left-hand eigenvector γ such that γB(a∗) =
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γ. Consequently, the first-order conditions of the Pareto problem are satisfied for
weights θ = γD(a∗)−1 by the calculation above. By the assumption of concave
utilities, it follows that a∗ solves the Pareto problem for weights θ (i.e., the first-
order conditions are sufficient for optimality).

An intuition for the result based on passing marginal benefits around a cycle and
thinking of B(a) an expansive linear system was presented in the introduction.

Remark 2. The condition that the spectral radius of B(a) is 1 is independent of
how different players’ cardinal utilities are measured – as, of course, it must be,
since Pareto efficiency is an ordinal notion. To see how the benefits matrix changes
under reparameterizations of cardinal utility, suppose we define, for each i ∈ N , new
utility functions ûi(a) = fi(ui(a)) for some differentiable, strictly increasing functions

fi. If we let B̂ be the benefits matrix obtained from these new utility functions,
then B(a) = B̂(a); this follows by applying the chain rule to the numerator and
denominator in the definition of the benefits matrix.

Proposition 1 focuses on interior outcomes. One particular boundary outcome
– the profile a = 0 in which nobody contributes – is particularly important. The
following proposition characterizes when it is Pareto efficient. A proof appears in
Section A.2.19

Proposition 2. Under Assumptions 1 and 2, the outcome 0 is Pareto efficient if
and only if r(B(0)) ≤ 1.

3.2 Quantifying Inefficiency: The Frictions Approach

The spectral radius of the benefits matrix does not merely diagnose inefficiency, but
also measures its magnitude. In particular, we will show that to eliminate all Pareto
improvements at a profile a, effort must be taxed at a rate equal to the spectral radius
of B(a) minus one.

To formalize this, this subsection focuses on a setting where costs and benefits are
separable.20 Suppose that for each i,

ui(a) = vi(a−i)− ci(ai),

where a−i is the vector of actions of players excluding i. Suppose also that the
resulting utility function satisfies the assumptions Section 2.2. Here vi is a function
mapping others’ contributions to i’s benefits, and ci is a cost function taking as an
argument i’s own effort. Construct a related economy in which frictions (e.g., due
to political economy issues internal to each agent) make it more costly to contribute
to public goods. More precisely, we posit that the cost function of each agent is

19Note that this proposition does not require the assumption that B(a) is irreducible.
20This is not essential to the result, but without separability, the counterfactual economy with

taxes becomes more complicated to define in ways that do not contribute insight; details are available
from the authors upon request.
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multiplied by τ , for some τ ≥ 0. The utility functions under this assumption are
given, for each i, by

u
(τ)
i (a) = vi(a−i)− τci(ai).

The quantity t = τ − 1 may be thought of as a tax rate on effort.21 Then we have
the following corollary of Proposition 1.

Corollary 1. Fix a positive real number τ . The interior action profile a is a Pareto
efficient outcome under u(τ) if and only if τ is the spectral radius of B(a;u).

Proof This follows from Proposition 1 by observing that, for all a ∈ Rn
+, it holds

that B(a;u(τ)) = τ−1B(a;u).

Thus, to rationalize an outcome a as being Pareto efficient, a tax rate of t =
r(B(a))− 1 on effort is required; effort must be taxed at a rate equal to the spectral
radius of B(a) minus one. Correspondingly, if r(B(a)) < 1, then effort must be
subsidized at the margin to render the outcome a efficient. This is a sense in which
the size of the spectral radius of B(a) is a quantitative measure of inefficiency.

Remark 3. The spectral radius is a continuous function of the matrix entries (see,
e.g., Wilkinson, 1965). It is reassuring that our measure of inefficiency varies contin-
uously in the data of the problem.

3.3 Quantifying Inefficiency: The Value of Egalitarian
Improvements

There is another way to think of the spectral radius of B(a) as measuring inefficiency.
In brief: there is a way in which actions can be changed at a to yield marginal
benefits per unit of marginal cost equal to the spectral radius of B(a) for all agents
simultaneously.

Let ∆n denote the simplex in Rn
+ defined by ∆n = {a ∈ Rn

+ :
∑

i ai = 1}.

Definition 1. The bang for the buck vector b(a,d) at an action profile a along a
direction d ∈ ∆n is defined by

bi(a,d) =

∑
j:j 6=i Jij(a)dj

−Jii(a)di
.

The thought experiment behind this definition is as follows: suppose that we start
at point a and consider increasing each agent i’s effort by εdi, for some small ε > 0.
Then bi(a,d) measures how much agent i receives in benefits (from others’ increases
in effort) per unit of cost incurred in increasing his own action22. In other words, it

21Formally, since τ can be between 0 and 1, the setup also allows for effort being subsidized by
an outside benefactor; in that case, t < 0.

22Formally, i’s cost is defined as the difference in i’s payoff between (i) leaving his own action
unchanged at ai (ii) increasing his own action by εdi (with aj unchanged for every j 6= i). Similarly,
i’s benefit is defined as the difference in his payoff between (iii) all other j increasing actions by εdj
while i holds his own action fixed at ai and (iv) nobody increasing actions.
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is equal to the ratio
i’s marginal benefit

i’s marginal cost

evaluated at a with respect to this hypothetical deviation from a. An agent gains
from everyone’s changing actions in the direction d when this ratio exceeds 1, and
loses when this ratio is less than 1.

We say a direction d ∈ ∆n is egalitarian if every entry of bi(a,d) is the same. That
is, any agent’s cost of increasing his action (relative to free-riding on this marginal
improvement by leaving his own effort unchanged) converts into benefits (received by
that agent) at the same rate. This can also be viewed as a Rawlsian direction: it
maximizes the minimum return any agent obtains from increasing effort.23

Proposition 3. At any a, there is a unique egalitarian direction deg(a). Every entry
of b(a,deg(a)) is equal to the spectral radius of G(a).

Proof of Proposition 3: Fix a and denote by r the spectral radius of B(a). Since
B(a) is nonnegative and irreducible, the Perron-Frobenius Theorem guarantees that
it has a right-hand eigenvector d such that

B(a)d = rd. (4)

This is equivalent to b(a,d) = r1, where 1 is the column vector of all ones. Therefore,
there is an egalitarian direction that generates a bang-for-the-buck of r (the spectral
radius of B(a)) for everyone.

Now suppose d̃ ∈ ∆n is any egalitarian direction, i.e. for some b we have

b(a, d̃) = b1.

This implies
B(a)d̃ = bd̃. (5)

By the Perron-Frobenius Theorem (statement (iii)), the only real number b and vector

d̃ ∈ ∆n satisfying (5) are b = r and d̃ = d.
Thus, deg(a) = d has all the properties claimed in the proposition’s statement.

When the spectral radius of B(a) exceeds 1, then by increasing actions in the
direction given by deg(a), an egalitarian Pareto improvement can be achieved, and
the benefit-to-cost ratio of that change is equal to r(B(a)) for every agent. When
the spectral radius of B(a) is less than 1, then by decreasing actions in the direction
−deg(a), each agent foregoes r(B(a)) units of benefit per unit of cost saved, and that
yields a Pareto improvement as well.

If agents negotiate over small improvements and fairness or equality concerns are
important, egalitarian directions may be a relevant benchmark because agents intrin-
sically care about them. However, and perhaps surprisingly, egalitarian directions
also arise naturally in the context of solutions to public goods problems with more
fundamental strategic foundations (see Remark 6 in Section 5.2).

23For a proof, see Section A.1
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3.4 Interpretations and Applications

While the spectral radius of the benefits matrix has the economic interpretations laid
out in the previous subsections, it is useful to give some intuition about what this
quantity measures in the structure of a network.

Section 3.4.1 gives a very simple example in which the benefits matrix is a cycle and
the spectral radius measures the magnitude of the benefits that are generated along
that cycle. Section 3.4.2 lays out the general facts about how cycles in the benefits
network relate to its spectral radius, fleshing out the claims in the introduction about
the importance of cycles to enabling Pareto improvements.

Section 3.4.3 shows a monotonicity result: when links in the benefits network get
weaker or disappear, its spectral radius decreases. Sections 3.4.4 and 3.4.5 explore an
important special case, discussing the decrease in a group’s potential for cooperation
when some of its members do not contribute. These sections focus particularly on the
question of which agents are essential, in the sense that their absence eliminates the
potential for any Pareto improvements on the status quo. Finally, Section 3.4.6 applies
the monotonicity result to bounding the gains from cooperation under imperfect
measurement of marginal costs and benefits.

3.4.1 A Simple Example

Suppose N = {1, 2, 3} and

B(0) =

 0 0 7
5 0 0
0 6 0

 .
This network is depicted in Figure 2. It can be computed that r(B(0)) = (5·6·7)1/3 ≈
5.94. Thus, there is substantial potential for cooperation in this network. The spectral
radius of B(0) is the geometric mean of weights in the benefits network along the
cycle – the product of these weights to the power 1/`, where ` is the cycle’s length.
We state without proof that this is always the case when there is just one cycle in
the network. Facts 1 below is a general bound that builds on this observation.

1

23

5

6

7

Figure 2: The network of the example. An arrow from from i to j indicates that
Bji > 0 (i.e. benefits flow from i to j) and the link is labeled by the weight Bji.
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3.4.2 Interpreting the Spectral Radius: Cycles of Mutual Benefit

As noted in the introduction, if we can find a cycle of players such that each can help
the next, then that creates scope for cooperation. The larger the benefits that can be
passed along a cycle, the greater that scope. This section formalizes the idea that the
spectral radius of a matrix can be interpreted generally as measuring the intensity of
such cycles.

Definitions A (directed) cycle of length ` in the matrix M is a sequence

(c(1), c(2), . . . , c(`))

of elements of N (player indices), where c(1) = c(`) – i.e., the cycle starts and ends at
the same node such that Mc(t)c(t+1) > 0 for each t ∈ {1, . . . , `− 1}.24 Let C(`;M) be
the set of all cycles of length ` in matrix M. For any nonnegative matrix M, define
the value of a cycle c ∈ C(`;M) as

v(c;M) =
`−1∏
t=1

Mc(t)c(t+1). (6)

This is the number obtained by taking the product of all weights along the cycle c in
the weighted directed graph defined by M. Define

V (`;M) =
∑

c∈C(`;M)

v(c;M).

This is the sum of the values of all cycles of length ` in matrix M.
Having made these definitions, we can show how the spectral radius of the benefits

matrix is related to the total value of such cycles.

A Note on the Directions of Links and Cycles Before this, it is worth remarking
on a potentially confusing wrinkle of the notation. Since the thing that is naturally
thought of as traveling among players is the positive externalities they confer on
each other, we think of the strength of the link directed from i to j (setting own
marginal cost of effort to 1) as Bji = ∂uj/∂ai – i.e., how much i can help j (recall
Figure 1 or Figure 2, for example). However, when a matrix B is represented as a
weighted directed graph, the typical convention is to label an arrow from i to j by
Bij. These two conventions conflict. This problem goes away if we instead focus on
BT, the transpose of B, when we draw the benefits network or discuss cycles in it. For
example, if we consider the cycle c = (1, 2, 3), then v(c;BT) = B21B32B13 multiplies
three factors: how much 1 helps 2, how much 2 helps 3, and how much 3 helps 1.

24Nodes other than the first and last may also be repeated in this sequence. The convention on
length – that the cycle i, j, i is said to be of length 3 even though it involves only two “steps” – is
slightly awkward but useful for consistency with the discussion in Section 5.5.

16



The Results First, any cycle provides a simple lower bound on the spectral radius
of a matrix. A proof of this fact is in Section A.9.

Fact 1. For any nonnegative matrix M and any cycle c of length ` in M,

r(M) ≥ v(c;M)1/`.

Moreover, the total value of long cycles provides an asymptotically exact estimate
to the spectral radius in the following sense:

Fact 2. For any nonnegative matrix M,

r(M) = lim sup
`→∞

V (`;M)1/`.

Proof of Fact 2: Note that V (`;M) = trace
(
M`
)
. With this replacement, the fact

is standard – see, e.g. Milnor (2001).

From these formulas we can conclude that V (`;B(a)T), the total magnitude of ben-
efit cycles25 at action profile a, grows roughly as e`·log r(B(a)) the sense that V (`;B(a)T)
gets that high infinitely often (and never gets higher). Thus, the logarithm of the
spectral radius of the benefits matrix can be thought of as the growth rate of the
cycle values as we increase the cycles’ length.

Intuitively, benefit networks with an imbalanced structure, in which it is rare for
the beneficiaries of one agent’s effort to be able to directly or indirectly “give back”,
will have a lower spectral radius and, in the senses we have articulated earlier in this
section, less scope for cooperation. Section 3.4.5 gives a concrete example where this
insight is key to determining which agents are essential.

3.4.3 Comparing Marginal Returns

We recall a standard fact from linear algebra (see, e.g., Debreu and Hernstein 1953,
Theorem I*).

Fact 3. If B and B̂ are two nonnegative matrices such that B ≥ B̂, then r(B) ≥
r(B̂).

A key economic consequence of this is a version of diminishing marginal returns:
the spectral radius of the benefits matrix decreases as actions increase.

Proposition 4. If a′ ≥ a, then r(B(a′)) ≤ r(B(a)).

25Here we use that the spectral radius does not change if we take the transpose. Of course, it
is perfectly legitimate to think of directed cycles in B, without transposing; this way of looking
at things simply leads to a different interpretation. In that case, the cycle (1, 2, 3) is a cycle of
dependence – 1 depends on the help of 2, who depends on the help of 3.
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Proof of Proposition 4: By the concavity of the ui, the inequality B(a′) ≤ B(a)
holds (where the inequality between matrices means entrywise inequality).26 Then
the fact above implies the result.

To formalize the interpretation of this as diminishing marginal returns, recall
that according to Section 3.3, the spectral radius measures the returns to egalitarian
investments at the margin.

3.4.4 How Essential is a Player?

The efficiency results provide a simple way of quantifying how essential any given
player is to the negotiations. Suppose for a moment that a given player exogenously
may or may not be able to participate in an institution to negotiate an outcome
that Pareto dominates the status quo. If he is not able, then his action is set to the
status quo level of ai = 0. How much does such an exclusion hurt the prospects for
cooperation by the rest of the society?

Without player i, the benefits matrix at the status quo of 0 is equal to the original
B(0) without row and column i; equivalently, each entry in that row and column
may be set to 0. Call a matrix constructed that way B[−i](0). By Proposition 3,
the spectral radius of B[−i](0) is smaller than that of B(0). The most dramatic case
is one in which the spectral radius of B(0) exceeds 1, but the spectral radius of
B[−i](0) is less than 1. Then by Proposition 3 on egalitarian improvements, a Pareto
improvement on 0 exists when i is present. But by Proposition 2, none exists when
0 is absent.

This argument shows that player i’s participation is essential to achieving any
Pareto improvement on the status quo precisely when his removal changes the spectral
radius of the benefits matrix at the status quo from being greater than 1 to being less
than 1.

More generally, the difference r(B(0)) − r(B[−i](0)) measures how much the po-
tential for cooperation at the margin is damaged when player i does not participate.
The strategic implications of this are discussed in Section 8.1.

3.4.5 A More Elaborate Example: Who is Essential?

We now build on the example of Section 3.4.1 to illustrate what it means for a player
to be essential. Suppose N = {1, 2, 3, 4} and

B(0) =


0 0 7 0.5
5 0 6 0.5
0 0 0 0.5

0.5 0.5 0.5 0

 . (7)

26This is established as follows. Fix any i. Concavity of ui implies that the Hessian of ui in
a is negative semidefinite. Therefore, each diagonal entry of this Hessian is nonpositive, and the
principal minor of the Hessian corresponding to leaving only two indices i and j is nonpositive. Then
it follows that −Jii(a) is increasing in ai and Jij(a) is decreasing in aj . But i and j were arbitrary,
and we can get from a to a′ by increasing actions one by one. That implies the needed inequality.
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See Figure 3 for a graphical depiction of this benefits matrix (panel b) and a compar-
ison with the example of Section 3.4.1.

1

23

5

6

7

(a) The example of Section 3.4.1.

1

23

4
5

6

7

0.5

0.5 0.5

(b) The benefits network of equation (7).

Figure 3: The benefit flows in (b) differ from those of (a) in two ways. First, the
arrow from 2 to 3 has been flipped, destroying the directed cycle 1→ 2→ 3. Second,
a new player (#4) has been added, with bilateral links of weight 0.5 in the benefits
matrix to all other players.

The import of the example is that player #4, even though he confers and receives
the smallest benefits, is the only essential player. Without him, there are no cycles at
all and the spectral radius of the corresponding benefits matrix B[−4](0) is 0 (by Fact
2). On the other hand, when he is present but any one other player i 6= 4 is absent,
then there is always a cycle whose edges multiply to more than 1, and the spectral
radius of B[−i](0) exceeds 1 (by Fact 1). Thus, the participation of a seemingly “small”
player in negotiations can make an essential difference to the ability to improve on
the status quo when that player completes cycles in the benefits network.

3.4.6 Bounding the Marginal Gains from Cooperation

In practical situations, the entries of the matrix B(a) may be known imperfectly, and
some of them may not be known at all. Can an analyst give useful advice about how
inefficient an outcome is in this circumstance?

We now explain the sense in which such advice under imperfect information is
possible. If we can find an estimator B̂(a) such that B̂ij(a) ≤ Bij(a), then r(B̂(a))
provides a lower bound on r(B(a)) by the monotonicity of the spectral radius (recall
Section 3.4.3 above). In particular, if we have good theoretical reasons to believe
that externalities are nonnegative for all pairs of players i and j but have no way
to estimate some of the marginal benefits, then we can simply set B̂ij = 0 for those
pairs.

By the results of Sections 3.2 and 3.3, a lower bound on r(B(a)) has practical
meaning: if we have such an estimate r̂ that exceeds 1, then we know that a tax
on contributions of at least r̂ − 1 is required to rationalize that outcome as Pareto
efficient. We know that there is an egalitarian vector that yields a bang for the buck
of at least r̂ at the current action profile. Thus, even partial knowledge of the network
of benefit flows can be useful. However, the results in Section 3.4.2 do tell us that for

19



these estimates to yield a conclusion that the status quo is inefficient, there must be
some cycles in the estimated benefits matrix.

Since in actual estimation, B̂(a) is a random variable, there is a question of
formulating a probabilistic version of the monotonicity result. This is a direction
for future work.

4 Lindahl Outcomes: Foundations

This section briefly reviews the framework and notation of implementation theory
(Section 4.1) and formally defines Lindahl outcomes (Section 4.2). The purpose of the
section is to state Theorem 1 in Section 4.3, which characterizes the Lindahl outcomes
as the robustly implementable ones, in the sense discussed in the introduction.

4.1 The Implementation Theory Framework

We consider a designer of an institution who can leave future participants with a
game to play. She does not know what preferences they will have. She believes they
will play an equilibrium, but does not know which equilibrium. She would like to
design the game so that all its equilibria have some desirable properties. What can
she do? Which outcomes can she achieve?

Let UA be the set of all functions u : Rn
+ → R. We denote by �u and �u the

weak and strict preference orderings, respectively, induced by u ∈ UA. The domain
of possible preference profiles27 is a set U ⊆ UnA; we will state specific assumptions on
it in our results.

A game form is a tuple H = (Σ1, . . . ,Σn, g) where:

• Σi is a set of strategies that agent i can play; we write Σ =
∏

i∈N Σi;

• g : Σ → Rn
+ is the outcome function that maps strategy profiles to action

profiles.

Definition 2. In a game form H = (Σ1, . . . ,Σn, g), a strategy profile σ ∈ Σ is a
Nash equilibrium for preference profile u ∈ U if for any i ∈ N and any σ̃i ∈ Σi, it
holds that g(σ) �ui g(σ̃i,σ−i). We define Σ∗(H,u) to be the set of all such σ.

A social choice correspondence F : U ⇒ Rn
+ maps each preference profile to a

nonempty set of outcomes. Any game form for which equilibrium existence is guaran-
teed28 naturally induces a social choice correspondence: its Nash equilibrium outcome
correspondence FH(u) = g(Σ∗(H,u)). The set FH(u) describes all the outcomes the
participants with preferences u can end up with if they are left with a game form H

27The standard approach (e.g. Maskin, 1999) is to work with preference relations. We use sets of
utility functions to avoid carrying around two parallel notations.

28Otherwise, we can still talk about the correspondence, but it will not be a social choice corre-
spondence, which is required to be nonempty-valued.
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and they play some Nash equilibrium. We say that FH is the social choice correspon-
dence that the game form H implements29. A social choice correspondence is said to
be implementable if there is some game form H that implements it.

There are two basic normative criteria we impose on such correspondences.

Definition 3. A social choice correspondence F is Pareto efficient if, for any u ∈ U
and a ∈ F (u), the profile a is Pareto efficient under u.

Definition 4. A social choice correspondence F is individually rational if, for any
u ∈ U and a ∈ F (u), it holds that a �ui 0.

An individually rational social choice correspondence is one that leaves every
player no worse off than the status quo. For more on how to interpret this condition,
see Section 8.1.

There is also a technical condition – upper hemicontinuity.

Definition 5. A social choice correspondence F is upper hemicontinuous if, for any
sequence

(
u(k)

)
of preference profiles converging compactly30 to u, and any sequence

of outcomes
(
a(k)
)

such that a(k) ∈ F
(
u(k)

)
for every k and a(k) → a, we have

a ∈ F (u).

This condition has some normative appeal in that a social choice correspondence
not satisfying upper hemicontinuity is sensitive to arbitrarily small changes in pref-
erences that may be difficult for the agents themselves to detect.

4.2 Definition of Lindahl Outcomes

Informally, a Lindahl outcome is an analogue, in a public goods setting, of a Wal-
rasian equilibrium allocation. Instead of standard prices for private goods, there are
personalized taxes and subsidies: each player pays a tax for every public good he
enjoys (in proportion to how much of that public good is produced), and receives a
personalized subsidy (financed by others’ taxes) per unit of effort he invests in the
public good he provides. More formally:

Definition 6. An action profile a∗ is a Lindahl outcome for a preference profile u if
there is an n-by-n matrix P so that the following conditions hold for every i:

(i) The inequality ∑
j:j 6=i

Pijaj ≤ ai
∑
j:j 6=i

Pji (BBi(P))

is satisfied when a = a∗;

(ii) for any a such that BBi(P) is satisfied, we have a∗ �ui a.

29To be more precise, this is full Nash implementation. Since we only consider this kind of
implementation, we drop the adjectives.

30That is, converging uniformly on every compact set.
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Note that there need not be any transferrable private commodity in which these
prices are denominated. We can think of each player having access to artificial tokens,
facing prices for the public goods denominated in these tokens, and being able to
choose any outcome subject to not using more tokens than he receives from others. If
all agents are choosing optimally at the given prices subject to this constraint, then
we are at a Lindahl outcome.

The Lindahl correspondence L : U ⇒ Rn
+ is defined by

L(u) = {a ∈ Rn
+ : a is a Lindahl outcome for u}.

In terms of interpretation, Pij is the price i pays j for the effort of j, and
∑

j:j 6=i Pji
is the “wage” or subsidy player i receives per unit of effort. Thus, BBi(P) is simply
a budget balance condition: expenditures are no greater than income.

The definition says that an action profile is a Lindahl outcome if there are some
prices so that the amounts of externalities produced and consumed are optimal for
each player, subject to budget balance at those prices. For any u satisfying the
assumptions of Section 2.2, the set L(u) is nonempty – see Section 7.1.

This definition, though simple, does not relate in an obvious way to realistic
markets; Samuelson (1954) elaborates on this. It is the implementation-theoretic
rationale that we are about to formally state that motivates our study of the Lindahl
outcomes.

4.3 The Hurwicz Rationale for Lindahl Outcomes

Fix U . Let F be the set of implementable social choice correspondences F : U ⇒ Rn
+

that are Pareto efficient, individually rational, and upper hemicontinuous. For any
u ∈ U , define the set of outcomes prescribed at u by every such correspondence:

R(u) =
⋂
F∈F

F (u). (8)

This defines a correspondence R : U ⇒ Rn
+. We call this the robustly attainable

correspondence.
If the set of possible preferences is rich enough, then the robustly attainable cor-

respondence is precisely the Lindahl correspondence.

Theorem 1. Suppose U is the set of all preference profiles satisfying the assumptions
of Section 2.2, and the number of players n is at least 3. Then the robustly attainable
correspondence is equal to the Lindahl correspondence: R = L.

As we note in Section 7.1 below, L is nonempty. Thus L is a minimal Pareto
efficient, individually rational, upper hemicontinuous social choice correspondence:
the outcomes it prescribes are a subset of those prescribed by any other social choice
correspondence with these properties. In particular, if the designer wants a mecha-
nism with a minimal set of equilibria (e.g., a unique equilibrium if possible), then she
must choose a game form H such that its equilibrium outcomes are precisely the ones
selected by the Lindahl solution.
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A proof of Theorem 1 can be found in Section 7.2. As we discuss formally in
Section A.4, it is not necessary to assume that U , the set of all preference profiles
the designer considers possible, is equal to the set of all preference profiles satisfying
the assumptions of Section 2.2. It suffices, for example, to assume that U contains a
neighborhood of every linear utility function. Actually, U can be assumed to be even
smaller than this.

The above theorem is an analogue of Theorem 3 of Hurwicz (1979a). Because the
environment studied in that paper (with assumptions such as nonzero endowments
of all private goods) is not readily adapted to ours, we prove the result separately,
using Hurwicz’s insights combined with Maskin’s Theorem.

5 The Main Result: A Network Centrality
Characterization of the Lindahl Outcomes

Having explained what makes Lindahl outcomes special from an implementation per-
spective, we present our main results on their characterization. Section 5.1 states two
equivalent definitions of eigenvector centrality action profiles. Section 5.2 is devoted
to Theorem 2, which asserts, in essence, that the Lindahl outcomes are the same as
the eigenvector centrality action profiles. Section 5.3 gives a simple first application:
characterizing the outcome when there is a global public good whose production is
additive and symmetric in the players’ effort levels. Section 5.4 derives a general
inequality on contribution levels at Lindahl outcomes: agents who enjoy all public
goods more at the margin also provide more themselves.

5.1 Eigenvector Centrality Action Profiles

5.1.1 Definition

Fix a preference profile u throughout this subsection and the next. The main theorem
characterizes Lindahl outcomes as ones satisfying a network centrality condition.

Definition 7. An action profile a ∈ Rn
+ is an eigenvector centrality action profile if

a 6= 0 and B(a)a = a.

The name comes from the fact that a is, according to the condition, a right-hand
eigenvector of B(a) with eigenvalue 1. In other words, for each i ∈ N ,

ai =
∑
j

Bijaj. (9)

Equation (9) asserts that each player’s contribution is a weighted sum of the other
players’ contributions, where the weight on aj is proportional to the marginal benefits
that j confers on i.
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5.1.2 An Alternative Definition: Scaling-Indifference

An eigenvector centrality action profile is equivalently characterized by a convenient
property called scaling-indifference, which we define and then explain.

Definition 8. An action profile a ∈ Rn
+ satisfies scaling-indifference (or is scaling-

indifferent) if a 6= 0 and J(a)a = 0.

The vector J(a)v gives the derivatives of utilities in ε when actions are changed
from a to a + εv for some vector v ∈ Rn. That is, to a first-order approximation,
u(a + εv) ≈ u(a) + εJ(a)v. Suppose now that actions are scaled by 1 + ε, for some
small real number ε; this corresponds to setting v = a. If J(a)a = 0, then all players
are indifferent, at the margin, to this small proportional perturbation in everyone’s
actions.

It is immediate to check that the vector a is an eigenvector centrality action profile
if and only if it satisfies scaling-indifference.

5.2 The Characterization

We now present our main theorem, characterizing Lindahl outcomes.

Theorem 2. Under the assumptions in Section 2.2, the following are equivalent for
a nonzero a ∈ Rn

+:

(i) a is a Lindahl outcome;

(ii) J(a)a = 0 – i.e., a is scaling-indifferent;

(iii) B(a)a = a – i.e., a is an eigenvector centrality action profile.

The key reasons behind this characterization are discussed in Section 7.3. The
formal proof appears in Section A.5.

Remark 4. The issue of when the profile 0 is a Lindahl outcome is treated in Propo-
sition 8 in Section A.6; the most important fact is that 0 is a Lindahl outcome if and
only if it is a Pareto efficient outcome.

The main theorem implies some simple consequences, tying up loose ends from
the earlier exposition.

Remark 5. By Theorem 2, at any nonzero Lindahl outcome a, the matrix B(a) has
a nonnegative right eigenvector a with eigenvalue 1, and therefore, by the Perron-
Frobenius Theorem (part (iii)), a spectral radius of 1. Proposition 1 then implies the
Pareto efficiency of a (we use Lemma 1 in Section A.3 to obtain that a is interior).
Of course, the standard proof of the First Welfare Theorem also goes through: see,
e.g., Foley (1970).

Remark 6. The scaling-indifference condition is equivalent to the assertion that
d = a/

∑
i ai is an egalitarian direction at a with corresponding bang for the buck

b(a,d) = 1 (recall Section 3.3). Therefore, we can alternatively characterize Lindahl
outcomes as Pareto efficient ones under which moving in the direction given by a
itself is egalitarian.
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Remark 7. Note that the condition J(a)a = 0 does not change if we form new
utility functions according to the transformation discussed in Remark 2 in Section
3.1. The Jacobian of the “new” utilities û is, by the chain rule, simply F(u(a))J(a),
where F(u) is a diagonal matrix with Fii(ui) = f ′i(ui). Since F(u(a)) is nonsingular
for the transformation being considered, it follows that J(a)a = 0 if and only if
F(u(a))J(a)a = 0.

Remark 8. The condition J(a)a = 0 is a system of n equations in n unknowns
(the coordinates of a). By a standard Sard’s Theorem argument, this entails that
for generic utility functions satisfying our assumptions, the set of solutions will be of
dimension zero in Rn

+. Therefore, the set of Lindahl outcomes is typically small, as is
usually the case with sets of market equilibria.

5.3 Example: A Global Public Good

The purpose of the general theory is, of course, to study environments with arbitrary
heterogeneity in marginal costs and benefits across pairs. But to get a feeling for the
mechanics of the characterization, it is helpful to consider a simple special case in
which the public good is global.

Suppose each player’s preferences are separable in costs and benefits, and the
benefits depend only on the sum of all effort levels:

ui(a) = vi

(∑
j∈N

aj

)
− ci(ai),

where each vi is continuously differentiable, increasing, and concave, while ci is con-
tinuously differentiable, increasing, and convex. To ensure that Assumption 1 holds,
we assume v′i(0) − c′i(0) < 0. We can think of the vi term as being the value of air
quality and the ci term as being the costs of foregone consumption.

To characterize the nonzero Lindahl outcomes, we use Theorem 2(ii). First, ob-
serve that:

Jij(a) =

{
v′i
(∑

k∈N ak
)

if i 6= j

−c′i(ai) if i = j.

Then the condition J(a)a = 0 can be rewritten:

ai∑
j∈N aj

=
v′i

(∑
j∈N aj

)
c′i(ai)

(10)

Thus, each agent contributes a share31 of the total public good provision equal to his
marginal rate of substitution between clean air and consumption.

31The right-hand side is less than 1 because we assumed that v′i(0)−c′i(0) < 0, and our assumptions
about vi and ci entail that vi − ci is a concave function.
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5.4 A Simple Inequality

The formula of Theorem 2(iii) equates an agent’s contribution at a Lindahl outcome
to quantities involving the marginal value of incoming benefits. This can be used to
derive a general result on relative contributions: if, at every outcome, agent i’s values
the help of any other agent k more than j does (in the sense of marginal rates of
substitution: i.e., Bik(a) ≥ Bjk(a) for all a ∈ Rn

+ and all k) then i always takes a
weakly greater action than j at any Lindahl outcome a∗ – that is, a∗i ≥ a∗j . This
generalizes (10) above.

5.5 An Interpretation of Eigenvector Centrality via Walks

In Section 3.4.2, we saw that the spectral radius of the benefits matrix could be
interpreted through the values of long cycles. A related interpretation applies to
eigenvector centrality action profiles. A walk of length ` in the matrix M is a sequence
(w(1), w(2), . . . , w(`)) of elements of N (player indices) such that Mw(t)w(t+1) > 0 for

each t ∈ {1, 2, . . . , ` − 1}.32 Let W↓i (`;M) be the set of all walks of length ` in M
such that w(`) = i – that is, the set of walks ending at i. For a matrix M, define the
value of a walk w of length ` as the product of all weights along the walk:

v(w;M) =
`−1∏
t=1

Mw(t)w(t+1).

Note that such walks can repeat nodes – for example, they may cover the same cycle
many times. Then we have the following:

Proposition 5. Let M = B(a)T and assume this matrix is aperiodic.33 Then a is
an eigenvector centrality action profile if and only if, for every i and j,

ai
aj

= lim
`→∞

∑
w∈W↓

i (`;M)

v(w;M)

∑
w∈W↓

j (`;M)

v(w;M)
.

A walk in B(a)T ending at i can be thought of as a chain of benefit flow: e.g., k
helps j, who helps i. The weight of such a walk is the product of the marginal benefits
along its links. According to Proposition 5, a player at an eigenvector centrality action
profile (and hence a Lindahl outcome) contributes in proportion to the total strength
of such benefit chains that he terminates.34

32As with cycles, defined in Section 3.4.2, nodes can be repeated in this sequence. Note also that
a cycle of length ` is a walk of length `.

33A simple cycle is one that has no repeated nodes except the initial/final one. A matrix is said
to be aperiodic if the greatest common divisor of the lengths of all simple cycles in that matrix is 1.

34The formula of the proposition would also hold if had we defined M = B(a) and replaced

W↓i (`;M) by W↑i (`;M) – the set of walks of length ` in M that start at i. The convention we use
above is in keeping with thinking of a walk in B(a)T capturing the way benefits flow; recall the
discussion in Section 3.4.2.
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6 Explicit Formulas for Lindahl Outcomes

The general characterization of Lindahl outcomes in terms of network centrality makes
no parametric assumptions on preferences. The cost of this generality is that the
characterization is implicit: an eigenvector centrality action profile a is defined with
respect to a matrix, B(a), that depends on a itself. To build intuition, it is useful to
study cases in which the Lindahl outcomes can be characterized explicitly in terms
of exogenous parameters.

To this end, the present section examines a parametric family of preferences in
which explicit formulas for the Lindahl outcomes are available. We study three differ-
ent regimes within this parametric family, and in each of them there is a connection
between Lindahl outcomes and an important centrality measure that has been studied
independently in the networks literature.35 In the first regime, actions are equal to
degree centralities. In the second, actions are equal to Bonacich centralities. And in
the third regime, actions approximate eigenvector centralities. In each case, the cen-
tralities are defined relative to an exogenous network, and all the results are special
cases of Theorem 2.

The propositions of this section may also be viewed as microfoundations for the
network centrality measures in terms of price equilibria, because the Lindahl out-
comes are defined in terms of prices (recall Definition 6 in Section 4.2). Each result
described below says that for particular preferences, the “market” levels of public
good provision defined by Lindahl are equal to centralities according to a particular
measure. Of course, in our framework the Lindahl outcomes are motivated primarily
by their implementation-theoretic foundations, but the connection to prices is also
worth noting.

Substantively, the import of this section is that in each case, what matters for
the level of i’s public good provision at a Lindahl outcome is the extent to which i is
the recipient of benefits. In the simplest case – Section 6.2 – i’s effort level is simply
the sum of coefficients that determine how much each of his neighbors can help him.
In Sections 6.3 and 6.4, what matters is not only links carrying benefits from other
agents to i, but chains or walks of favor-giving links, involving multiple agents, that
terminate at i.

6.1 A Parametric Family of Preferences and an Explicit Formula
for Lindahl Outcomes

Let G and H be nonnegative matrices with zeros on the diagonal and r(G) < 1. For
each i ∈ N let36

ui(a) = −ai +
∑
j

[Gijaj +Hij log aj] . (11)

35We will introduce each measure without assuming background in network topics.
36These should be viewed as functions ui : Rn+ → R ∪ {−∞}, with 0 · log 0 understood as 0. In

other words, preferences should be completed by continuity to the extended range. No result in the
paper is affected by this slight departure from the framework of Section 2.
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Then the benefits matrix B(a) is given by:

Bij(a) =

{
Gij +

Hij

aj
if i 6= j

0 otherwise.

Defining hi =
∑

j Hij, the condition for a to be an eigenvector centrality action profile
– i.e., a = B(a)a – boils down to

a = h + Ga

or
a = (I−G)−1h. (12)

The vector a is well-defined and nonnegative37 by the assumption that r(G) < 1.
This formula will yield all of the results in this section.

6.2 Degree Centrality

The most basic measure of connectedness is the total weight of links that a node has.

Definition 9. For a nonnegative matrix M the degree centrality in M is defined by
the following equation for each i:

δi(M) =
∑
j

Mij

Suppose G is the zero matrix and H = M for a matrix M with zeros on the
diagonal. Then it follows immediately from (12) that, under the preferences of (11)
with these parameter values, we have

a = δi(M).

In other words, when costs are linear in one’s own action and benefits are logarithmic
in others’ actions, then an agent i’s contribution is determined by how much he
benefits from everyone else’s effort at the margin: the sum of coefficients Hij as j
ranges across the other agents. The agents who are particularly dependent on the
rest are the ones who are contributing the most. Note that how much others depend
on i does not figure at all in this formula. If i’s help suddenly becomes much more
valuable to others, then his action does not change, though his share of the overall
contribution goes down (because others’ action levels go up).

Thus, even in the simplest case, this analysis already yields some stark compara-
tive statics in levels of provision.

6.3 Bonacich Centrality

The second centrality measure we consider is due to Bonacich (1987).38

37See Ballester, Calvó-Armengol, and Zenou (2006, Section 3).
38An important antecedent was discussed by Katz (1953).
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Definition 10. For a nonnegative matrix M and a constant α < 1/ρ(M), the
Bonacich centrality of parameter α in M is defined by

β(M, α) = [I− αM]−1 1,

where 1 is the column vector of ones.

Dropping the arguments, the defining equation says that for every i, we have:

βi = 1 + α
∑
j

Mijβj.

Thus, every node gets a baseline level of centrality (one unit) and then additional
centrality in proportion to the centrality of those it is linked to.

Now, returning to the preferences defined by equation (11), let G = αM for any
M with zeros on the diagonal and α < 1/r(M). If we fix any H such that each row
sums to 1, then (12) implies

a = β(M, α). (13)

An Interpretation via Walks To shed further light on this result, recall the defini-
tions and notation related to walks from Section 5.5, and let

Vi(`;M) =
∑

w∈W↓
i (`;M)

v(w;M).

This is the sum of the values of all walks of length ` in M ending at i. Then we have:

Fact 4. βi(M, α) = 1 +
∑∞

`=1 α
`Vi(`;M

T).

Fact 4 is established, e.g., in Ballester, Calvó-Armengol, and Zenou (2006, Section
3). Thus, the Bonacich centrality is equal to one plus a weighted sum of values of all
walks in MT terminating at i, with longer walks downweighted exponentially.

In contrast to the case of degree centrality treated in the previous section, it
is not only how much i benefits from his immediate neighborhood that matters in
determining his contribution, but also how much i’s neighbors benefit from their
neighbors, etc.

6.4 Eigenvector Centrality

Eigenvector centrality was defined in the introduction, and is a key notion throughout
the paper. Indeed, one may ask why this section is necessary – after all, doesn’t
Theorem 2 establish a general connection between eigenvector centrality and Lindahl
outcomes?

The answer is that Theorem 2 characterizes a through an endogenous eigenvector
centrality condition – a condition that depends on B(a). In this section, we study
the special case in which action levels approximate eigenvector centralities defined
according to an exogenous network.
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Fix any nonnegative, irreducible matrix M. By the Perron-Frobenius Theorem,
M has a unique eigenvector centrality vector e, with entries summing to 1, so that
e = γ ·Me, where γ = 1/r(M).

In the specification (11), let H be any matrix such that each row of H sums to 1.
For any z < 1, let G = z

r(M)
M.

By the result just established in Section 6.3,

a = β

(
M,

z

r(M)

)
.

The key fact that allows us to connect outcomes to eigenvector centrality as opposed
to Bonacich centrality is this: as z ↑ 1, it holds that ai/aj → ei/ej for every i, j. That
is, each player’s share of the total of all actions converges to his eigenvector centrality
according to M. The essential reason for this convergence is presented in the proof
of Theorem 3 of Golub and Lever (2010); see also Bonacich (1991).

7 Tying up the Theory

This section focuses on the proofs of the two most important results – Theorem 1
and Theorem 2 – as well as on the existence of Lindahl outcomes.

First, Section 7.1 states the existence of outcomes satisfying the three equivalent
conditions of Theorem 2, and in particular the existence of Lindahl outcomes. Section
7.2 uses Theorem 2 to prove Theorem 1 (the theorem on what makes Lindahl outcomes
special from the implementation perspective). Section 7.3 sketches the proof of our
main result, Theorem 2; the full proof appears in the appendix.

7.1 Existence of Lindahl Outcomes

For completeness, we state a result on the existence of Lindahl outcomes in our
setting.39

Proposition 6. If u satisfies the assumptions of Section 2.2, then L(u) is nonempty,
i.e., there is a Lindahl outcome for this preference profile. Moreover, either 0 ∈ L(u)
or there is a Lindahl outcome in which all actions are strictly positive.

The proof appears in Section A.8, and works by directly showing the existence of
scaling-indifferent outcomes; existence of Lindahl outcomes then follows by Theorem
2. The existence of scaling-indifferent outcomes may be of some independent interest,
and is established without reference to prices, since the condition J(a)a = 0 does not
involve prices.

39See Foley (1970) for a general existence proof. Note, however, that adapting Foley’s environment
to ours – in which, for example, there are no ex ante upper bounds on public good provision – is
not entirely trivial.
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7.2 Proof of Theorem 1 on the Hurwicz Rationale for Lindahl
Outcomes

In this section, we give a proof of Theorem 1 in Section 4.3, which asserts that the
only robustly attainable outcomes are the Lindahl outcomes.

To do this, we briefly recall Maskin’s Theorem. Assuming that the number of
agents n is at least 3 and and that a social choice correspondence F satisfies no
veto power 40 (a condition that is vacuously satisfied in our setting), then F is imple-
mentable if and only if it satisfies Maskin monotonicity.

Definition 11. A social choice correspondence F : U ⇒ Rn
+ satisfies Maskin mono-

tonicity if, for all a∗ ∈ Rn
+ and all û,u ∈ U , if a∗ ∈ F (û) and

∀i ∈ N,∀a ∈ Rn
+, a∗ �ûi a ⇒ a∗ �ui a (14)

then a∗ ∈ F (u).41

Proof of Theorem 1: First we show that42 R ⊆ L. By the definition that
R(u) =

⋂
F∈F F (u), it suffices to show that L ∈ F ; i.e. that L is an implementable,

individually rational, Pareto efficient, and upper hemicontinuous social choice corre-
spondence. First, a social choice correspondence must be nonempty-valued; Proposi-
tion 6 in Section 7.1 guarantees that L complies. By Assumption 3, the no veto power
condition is vacuous in our setting. It is verified immediately from Definition 6 that
L satisfies Maskin monotonicity.43 Thus, L is implementable by Maskin’s Theorem.
Also, L is individually rational since, by definition of a Lindahl outcome, each agent
prefers a Lindahl outcome to 0, which is always feasible. By the standard proof of
the First Welfare Theorem, L is Pareto efficient (see, e.g., Foley, 1970). Similarly, the
standard argument for the upper hemicontinuity of equilibria in preferences transfers
to our setting.

Now assume F is implementable, Pareto efficient, individually rational, and upper
hemicontinuous. Fix u ∈ U and a∗ ∈ L(u). We will show a∗ ∈ F (u). Define

û(a) = J(a∗;u)a.

Lemma 2 in Section A.4 states that since F is individually rational, Pareto efficient,
and upper hemicontinuous, it follows that a∗ ∈ F (û).44 Note that for all a ∈ Rn

+, we

40A social choice correspondence F : U ⇒ Rn+ satisfies no veto power if, for every u, whenever
there is an a such that a �ui

a′ for all i 6= i′ and all a′ ∈ Rn+, then a ∈ F (u).
41In words, if an alternative a was selected by F under u and then we change those preferences

so that a, in each agent’s preference, defeats all the same alternatives as under u and perhaps some
others, then a is still selected under û.

42For two correspondences F, F ‡ : U → Rn+, we write F ⊆ F ‡ if for every u ∈ U , it holds that
F (u) ⊆ F ‡(u). In this case, we say that F is a sub-correspondence of F ‡.

43If û and u are as in the above definition of Maskin monotonicity and a is a Lindahl outcome
under preferences û, then using the same price matrix P, the outcome a still satisfies condition (ii)
in Definition 6.

44The proof of that lemma constructs a sequence of preference profiles (û(k)) converging to û such
that individual rationality and Pareto efficiency alone force the set F (û(k)) to converge to a∗. Then
by upper hemicontinuity of F , it follows that F (û) contains a∗.
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have
û(a∗)− û(a) = J(a∗;u)(a∗ − a) ≤ u(a∗)− u(a)

by concavity of u, so (14) holds. Since F is implementable, it satisfies Maskin mono-
tonicity, so we conclude that a∗ ∈ F (u).

7.3 Centrality Characterization of Lindahl Outcomes: Proof
Outline

It will be convenient to use in this section an equivalent definition of Lindahl outcomes:

Definition 12. An action profile a∗ is a Lindahl outcome for a preference profile
u if there exists an n-by-n matrix P with each column summing to zero so that the
following conditions hold for every i:

(i) The inequality ∑
j∈N

Pijaj ≤ 0 (B̂Bi(P))

is satisfied when a = a∗;

(ii) for any a such that B̂Bi(P) is satisfied, we have a∗ �ui a.

Given a Lindahl outcome defined as in Definition 6, set Pii = −
∑

j:j 6=i Pji to find

prices satisfying the new definition.45 Conversely, the prices of Definition 12 work in
Definition 6 without modification, since the original definition does not involve the
diagonal terms of P at all.

The difficult part of Theorem 2 is showing that, for a nonzero a∗, the condition
J(a∗)a∗ = 0 implies that a∗ is a Lindahl outcome. (The converse implication is
straightforward, as we will note at the end of this section.) The key to the proof is
to observe that the system of equations J(a∗)a∗ = 0 actually encodes all of the equi-
librium conditions. It allows us to extract Pareto weights that support the outcome
a∗ as efficient, and using those Pareto weights and the Jacobian, we can construct
prices that support a∗ as a Lindahl outcome.

Now in more detail: suppose J(a∗)a∗ = 0. We will assume that a∗ is interior,
which is legitimate by Lemma 1 in Section A.3 (which shows that nonzero Lindahl
outcomes are interior). Recalling Remark 5, the matrix B(a∗) has a spectral radius
of 1 and thus, by Proposition 1, the profile a∗ is a Pareto efficient outcome. So there
are Pareto weights θ such that a∗ solves P(θ). (This is the point where the Perron-
Frobenius Theorem plays a key role – recalling the proof of Proposition 1 in Section
3.1.) That implies that the first-order conditions of the Pareto problem P(θ) defined
in the proof of Proposition 1 are satisfied: for each j, we have∑

i∈N

θjJij(a
∗) = 0.

45In essence, −Pii is the wage of agent i, equal to the sum of taxes paid for his effort.
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Let us guess prices Pij = θjJij(a
∗). Then

∑
i Pij = 0 for each j. Thus, the price

matrix is a legitimate candidate for Definition 12. Moreover, the budget balance
condition B̂Bi(P) is satisfied at these prices, since, for each i,∑

j∈N

Pijaj = θi
∑
j∈N

Jij(a
∗)a∗j = 0.

The first equality is by construction of the prices, and the second is by the assumption
that J(a∗)a∗ = 0. Thus, each agent is exhausting his budget. It only remains to see
that each agent is optimizing at prices P. The essential reason for this is that price
ratios are equal to marginal rates of substitution by construction:

Pij
Pik

=
θiJij(a

∗)

θiJik(a∗)
=
Jij(a

∗)

Jik(a∗)
. (15)

The choice of prices Pij = θiJij(a
∗) is intuitive. The price that i pays for j’s

effort is proportional to the marginal value to i of j’s effort, and also proportional
to i’s Pareto weight θi. The reason that Pareto weights enter this way can be seen
as follows. In the the constrained optimization problem of maximizing ui(a) subject

to B̂Bi(P), the first-order conditions boil down to Pij = µ−1i Jij(a), where µi is the

Lagrange multiplier on the constraint B̂Bi(P). Since µi is the marginal utility of

relaxing the constraint B̂Bi(P) – i.e. the marginal utility of income – it follows that
the Pareto weight θi plays the role of inverse marginal utility of income. Thus, agents
with low marginal utilities of income are charged relatively higher prices.

The converse implication – that if a∗ is a nonzero Lindahl outcome, then J(a∗)a∗ =
0 – is simple. As before, by Lemma 1 in Section A.3, we know a nonzero Lindahl
outcome a∗ is interior. Since agents are optimizing given prices, we have

Pij
Pik

=
Jij(a

∗)

Jik(a∗)
,

which echoes (15) above. In other words, each row of P is a scaling of the same row
of J(a∗). Therefore, the condition that each agent is (exactly) exhausting his budget
– which can be briefly written as Pa∗ = 0 – implies that J(a∗)a∗ = 0.

8 Concluding Discussion

8.1 Free-Riding

Throughout, we have studied the implementation problem under the requirements of
Pareto efficiency and individual rationality. The latter is defined in terms of leaving
everyone no worse off than at the status quo. In mechanism design and implementa-
tion problems, the individual rationality requirement is often motivated by the notion
that participation is voluntary. For example, if a player may end up worse off after an
auction than before he entered, then he may not wish to participate, paying nothing
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and having no chance of winning the item. The value of this outcome can be normal-
ized to 0 because it is independent of what happens in the mechanism without the
agent.

In our context, the notion of opting out is more complicated. Since the goods in
question are public goods, a player who “opts out” of a mechanism to provide them
often cannot be excluded from enjoying the benefits of an arrangement reached in his
absence – for example, one that leads to cleaner air or water. Thus, a player may wish
to “opt out” in hopes of enjoying public goods provided by others without investing
any effort himself.

In the analysis so far, we have implicitly assumed that players can commit to
participate as part of their general power to commit to the rules of an institution –
the function g in the language of Section 4.1. To explore the extent to which this is
a binding assumption, we enrich the environment, giving each player an inalienable
decision over whether to participate – one that he cannot make commitments about
or delegate.46 As in Section 3.4.4, agent i not participating means setting ai = 0, i.e.
making it it impossible to take positive action. If an agent chooses to participate,
then he can commit to the rules of the subsequent game that sets the action profile
a, as in Section 4.1.

Formally, we assume that the designer of Section 4.1 announces a family of game
forms, (HP )P⊆N , one for every possible set P of participants. Players first simulta-
neously and unilaterally choose whether to participate, and the set P of those who
chose to participate play the game HP , just as in Section 4.1.

The idea of this section is that we can provide a sufficient condition under which
no player wishes to use his power to opt out. Recall Section 3.4.4, in which we showed
that player i’s participation is essential to achieving any Pareto improvement on the
status quo precisely when his removal changes the spectral radius of the benefits
matrix at the status quo from being greater than 1 to being less than 1. If each
player has this property, then his decision not to participate leaves the remaining
players with no Pareto improvement on the status quo. Thus, assuming each HP

always implements Pareto efficient outcomes that are at least as good as 0 for each of
the remaining participants, the only outcome a player can hope for after opting out
is 0.

In short, we have argued that if every player is essential, then each player expects
that opting out will lead to the outcome 0. Therefore, individual rationality as we
defined it in our main analysis is equivalent to voluntary participation.

There is a simple matrix characterization of what it means for every player to
be essential: the spectral radius of B(0) exceeds 1, and the spectral radius of every
submatrix obtained by removing one row and one column is less than 1.

This argument yields only a crude sufficient condition and suggests avenues for
future work, of which we mention one. What if opting out decisions are made in
equilibrium? An interesting framework is one in which they are sequential and players
behave farsightedly, anticipating the effects of their opting out on others’ incentives to
participate in providing the public goods. How can we compute, given any B(0), the

46See Kartik and Tercieux (2012) for a discussion of inalienability in the context of implementation
with evidence.
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largest stable coalition not at risk of being unraveled by rational sequences of decisions
to opt out? (See Genicot and Ray [2003] for a related analysis in a risk-sharing game.)

8.2 Lindahl Outcomes and Coalitional Deviations: The Core

One of the definitions of the core in games with externalities considers an outcome to
be outside the core if a coalition can, by choosing a different action profile, improve
the welfare of every one of its members no matter what the others do. Recall that
in our setting, externalities across players are always nonnegative by Assumption 2,
so in this case the uniformly worst punishment by the outsiders is to play 0. The
outcomes that do not admit such a deviation are the core outcomes. Formally:

Definition 13. An action profile a is in the β-core under a preference profile u if
there is no nonempty coalition M ⊆ N and no other action profile a′ of this game so
that:

(i) a′i = 0 for all i /∈M ;

(ii) for each i ∈M we have a′ �i a.

Under nonnegative externalities, the Lindahl outcomes are in the β-core (Shapley
and Shubik, 1969; Foley, 1970).

Leaving no coalition worse off than they could be without outsiders’ help may
be a desirable normative property. It is also important, intuitively speaking, for
making sure that coalitions do not have incentives to secede. However, developing a
full non-cooperative theory of play under the possibility of coalitional deviations is a
very challenging and important direction for future work. Rubinstein (1980), Bern-
heim, Peleg, and Whinston (1987), and Horniaček (1996) make progress in different
directions.

8.3 The Informational Assumptions of the Implementation
Theory Framework

In the setup of Section 4.1, we follow the standard approach of complete information
implementation in focusing on the Nash equilibria of the game form H given agents’
true preferences. This implicitly assumes that agents know enough about each other’s
strategies to play a Nash equilibrium of the game.47 On the other hand, the institu-
tions in which they interact – the rules of the game – are long-run, and are designed
to be robust to many realizations of preferences.

We do not view the assumption that agents play Nash equilibria of the complete
information game as very restrictive or inappropriate when the negotiators represent
municipalities or countries.48 In those cases, decisions about strategy are made by in-
stitutions (e.g. governments) whose agents communicate internally, and consequently

47Viewed as elements of the strategy spaces Σi, not as maps from privately known types to such
strategies.

48Roberts (2008) briefly critiques the informational assumptions of complete information Nash
implementation when the agents in question are many citizens in a public finance setting.
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the intentions of each government are difficult to conceal from counterparties. Re-
latedly, the parties often base their valuations on a more or less common pool of
information. For instance, when the public good is environmental, then estimates of
the economic sacrifices needed for abatement and the harms from pollution – which
jointly determine the payoffs – are made based on information and models regarding
the environment and the economy that are essentially public.49

Nevertheless, a setting with some incomplete information is certainly more realistic
than the stark complete information benchmark, and further study of it is a direction
for future work.50

8.4 Irreducibility of the Benefits Matrix

In Assumption 3, we posited that B(a) is irreducible – i.e., that it is not possible to
find an outcome and partition society into two nonempty groups such that, at that
outcome, one group does not care about the effort of the other at the margin.

How restrictive is this assumption? We now discuss how our analysis extends
beyond it. Suppose that whether Bij(a) is positive does not depend on a, so that
the directed graph describing whose effort matters to whom is constant. Let G be a
matrix defined by

Gij =

{
1 if i 6= j and Bij(a) > 0 for all a

0 otherwise.

We say a subset S ⊆ N is closed if Gij = 0 for every i ∈ S and j /∈ S. We say S is
irreducible if G is irreducible when restricted to S.

We can always partition N into some closed, irreducible subsets

S(1), S(2), . . . , S(m)

and a remaining class T of agents who are in no closed, irreducible subset. The utility
of any agent in a set S(k) is independent of the choices of anyone outside the set (and
these are the minimal sets with that property). So it seems reasonable to consider
negotiations restricted to each such set; that is, to take the set of players to be S(k).
All our analysis then goes through without modification on each such subset.

When entries Bij(a) change from positive to zero depending on a, then the analysis
becomes substantially more complicated, and we leave it for future work.

49We thank Joe Shapiro for suggesting this point. Of course, the information and the models may
themselves involve a great deal of uncertainty. This alone need not create a problem for complete
information implementation because it is uncertainty common to the agents, and therefore does
not create informational asymmetries – as long as the agents know counterparties’ preferences and
beliefs.

50See Tian (1996) for a study of implementing a rational expectations Lindahl equilibrium and
Jackson (2001) for a survey of incomplete-information implementation theory.
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A Omitted Proofs and Additional Results

A.1 Rawlsian Interpretation of Bang for the Buck

This section gives a formal statement and proof of the Rawlsian interpretation of an
egalitarian direction: that it maximizes the minimum return on investment.

Proposition 7. The egalitarian direction deg(a) maximizes mini bi(a,d) among all
d ∈ ∆n.

Proof of Proposition 7: The Collatz-Wielandt formula (Meyer, 2000, equation
8.3.3) says that r(B(a)) is the maximum of

min
i

[B(a)d]i
di

as v ranges over nonzero, nonnegative vectors d ∈ ∆n. Thus, the minimum bang
for the buck is never greater than r(B(a)). The proof of Proposition 3 in Section
3.3 shows that the bang for the buck in the egalitarian direction deg(a) is equal to
r(B(a)) for everyone. This completes the proof.

A.2 The Zero Action Profile as a Pareto Efficient Outcome

Proof of Proposition 2 in Section 3.1: First we prove the result in the case
when B(0) is irreducible.

If r(B(0)) > 1, then Proposition 3 yields an egalitarian direction at 0 with bang
for the buck exceeding 1; this is a Pareto improvement at 0.

If 0 is not Pareto efficient, there is an a′ ∈ R+ such that ui(a
′) ≥ ui(0) for each

i, with strict inequality for some i. Using Assumption 3, namely the irreducibility of
B(a′), as well as the continuity of the ui, we can find51 an a′′ with all positive entries
so that ui(a

′′) > ui(0) for all i. Let v denote the derivative of u(ζa′′) in ζ evaluated
at ζ = 0. This derivative is strictly positive in every entry, since (by convexity of the
ui) the entry vi must exceed [ui(a

′′)−ui(0)]/a′′i . By the chain rule, v = J(0)a′′. From
the fact that v is positive, it is immediate to deduce that there is a positive vector
w so that B(0)w > w. And from this it follows by the Collatz-Wielandt formula
(Meyer, 2000, equation 8.3.3) that the spectral radius of B(0) exceeds 1.

Now assume B(0) is reducible.
If r(B(0)) > 1, then the same is true when B(0) is replaced by one of its irreducible

blocks, and in that case a Pareto improvement on 0 (involving only the agents in the
irreducible block taking positive effort) is found as above.

51Suppose otherwise and let a′′ be chosen so that u(a′′) − u(0) ≥ 0 (note this is possible, since
a′′ = a′ satisfies this inequality) and so that the number of 0 entries in u(a′′)− u(0) is as small as
possible. Let S be the set of i for which ui(a

′′) − ui(a) > 0. Then by irreducibility of benefits, we
can find j ∈ S and k /∈ S such that Jkj(0) > 0. Define a′′′j = a′′j + ε and a′′′i = a′′i for all i 6= j. If
ε > 0 is chosen small enough, then by continuity of the ui we have ui(a

′′′)− ui(a) > 0 for all i ∈ S,
but also uk(a′′′)− uk(a) > 0, contradicting the choice of a′′.
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Now suppose 0 is not Pareto efficient. There is an a′ ∈ R+ such that ui(a
′) ≥ ui(0)

for each i, with strict inequality for some i. Let P = {i : a′i > 0} – the set of agents

taking positive actions at a′. And let B̂(0) be obtained by restricting B(0) to P (i.e.
by throwing away rows and columns not corresponding to indices in P ). For each

i ∈ P , there is a j ∈ P such that B̂ij(0) > 0; otherwise, then i would be worse off

than at 0. Therefore, each i ∈ P is on a cycle52 in B̂(0). And it follows that for

each i ∈ P there is a set Pi ⊆ P such that B̂(0) is irreducible when restricted to
Pi. Next, applying the argument of footnote 51 to each such Pi separately, we can
find a′′ such that ui(a

′′) > ui(0) for each i ∈ P . From this point we can argue as

above53 to conclude that r(B̂(0)) > 1. Since B̂(0) is a submatrix of B(0), Fact 3 on
the monotonicity of the spectral norm implies that r(B(0)) > 1.

A.3 Nonzero Lindahl Outcomes are Interior

The following simple lemma underlies several important steps in the ensuing argu-
ments.

Lemma 1. If a∗ 6= 0 is a Lindahl outcome for preference profile u, then a∗ ∈ Rn
++.

Proof of Lemma 1: Assume, toward a contradiction, that a∗ has some entries
equal to 0. Let P be the matrix of prices given in Definition 6 supporting a∗ as a
Lindahl outcome. Let S be the set of i so that a∗i = 0, which is a proper subset of
N since a∗ 6= 0. By Assumption 3 (irreducibility of benefits), there is an i ∈ S and a
j /∈ S so that Jij(a

∗) > 0. We will argue that this implies

Pij > 0.

If this were not true, then an a 6= a∗ in which only j increases his action slightly
relative to a∗ would satisfy BBi(P) in Definition 6 and be better for i than a∗,
contradicting the definition of a Lindahl outcome.

Now consider BBi(P), the budget balance condition of agent i, at the outcome
a∗: ∑

k:k 6=i

Pika
∗
k ≤ a∗i

∑
k:k 6=i

Pki.

Since a∗i = 0, the right-hand side of this is zero. Since Pij > 0, and a∗j > 0 (since
j /∈ S), the left-hand side is positive. That is a contradiction.

A.4 The Deferred Lemma in the Proof of Theorem 1, and a
Stronger Version of the Theorem

As noted in Section 4.3, the Hurwicz rationale for the Lindahl outcomes is more
general than is stated there. In this section, we formalize and prove this, also tying
up the proof of Theorem 1. Let A be the set of preference profiles u satisfying the
assumptions of Section 2.2.

52Recall the definition in Section 3.4.2.
53The Collatz-Wielandt formula does not assume irreducibility.
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Fix any probability measure µ on Rn
+ that is absolutely continuous with respect

to Lebesgue measure – in particular, one assigning positive measure to every open
set. We define a metric d on A by d(u, û) =

∫
Rn
+
|u − û|dµ. That metric induces a

topology on the function space A.

Definition 14. A set of preferences U ⊆ A is called rich if, for every u ∈ U and
a∗ ∈ Rn

+, there is a (linear) preference profile û ∈ U defined by54

û(a) = J(a∗;u)a (16)

and a neighborhood of û relative to A is contained in U .

Richness of U requires that for every preference profile u ∈ U and every a∗ ∈ Rn
+,

there are preferences in U that are linear over outcomes and have the same marginal
tradeoffs as u does at a∗, as well as a neighborhood of these preferences. To take a
simple example, A itself is rich.

Theorem 3. Suppose U is rich and the number of players, n, is at least 3. Then the
robustly attainable correspondence is equal to the Lindahl correspondence: R = L.

The proof is exactly as in Section 7.2. The only thing that remains to do is to
establish the following lemma used in that proof under the hypothesis that U is rich
(the result needed in Section 7.2 is then a special case).

Lemma 2. Fix u satisfying the assumptions of Section 2.2 and an a∗ ∈ L(u). Define
û as in (16). Suppose F : U ⇒ Rn

+ is a Pareto efficient, individually rational, and
upper hemicontinuous social choice correspondence. If U is rich, then a∗ ∈ F (û).

Proof of Lemma 2: First, assume that a∗ = 0 is a Lindahl outcome. In that case,
by Proposition 8 in Section A.6 below (or simply the First Welfare Theorem), the
outcome 0 is Pareto efficient. In particular, J(0;u)a has a negative entry for every
nonzero a ∈ Rn

+; otherwise, we would be able to find a (nearby) Pareto improvement
on 0 under u. It follows that 0 is the only individually rational and Pareto efficient
outcome under û. So a∗ ∈ F (û).

Now assume a∗ 6= 0. By Lemma 1 in Section A.3, a∗ is interior – all its entries
are positive.

For γ > 0, and i ∈ N , define û
[γ]
i : Rn

+ → R by

û
[γ]
i (a) = Jii(a

∗;u) (γ + ai)
1+γ +

∑
j 6=i

Jij(a
∗;u)aj.

This is just an adjustment obtained from û = û[0] by building some convexity into
the costs. Note that for all γ close enough to 0, the profile û is in U by the richness
assumption.

Choose a(k) ∈ F (û[1/k]); this is legitimate since F is a social choice correspondence,
and hence nonempty-valued. We will show that by the properties of F , a subsequence

54Of course, it suffices that there be some ̂̂u ∈ U that generates the same preferences for each
agent.
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of the sequence (a(k))k converges to a∗. Then by upper hemicontinuity of F , it will
follow that a∗ ∈ F (û[0]), as desired. The trickiest part of the argument is showing
that the a(k) lie in some compact set, so we can extract a convergent subsequence; it
will then be fairly easy to show that the limit point of this sequence is a∗.

Let IR[γ] be the set of individually rational points under û[γ] and let PE[γ] be
the set of Pareto efficient points under û[γ]. Let a∗max = maxi a

∗
i and define the box

K = [0, 2a∗max]
n.

Claim 1. For all k, the point a(k) is either in K or on the ray

Z = {a ∈ Rn
+ : J(a∗;u)a = 0}.

To show the claim, we first establish that

IR[0] = Z.

The proof is as follows. First note that û[0](a) = J(a∗;u)a. There cannot be an a
such that J(a∗;u)a is nonnegative in all entries and positive in some entries.55 Thus,

if J(a∗;u)a is nonzero, it must have some negative entries; i.e. û
[0]
i (a) < 0 for some i,

and then a /∈ IR[0], contradicting the fact that F is individually rational.
Note that for a outside the box K, we have for small enough γ

û[γ](a) ≤ û[0](a).

From this and the fact that û[γ](0) = 0 for all γ, we have the relation

IR[γ] ∩Kc ⊆ IR[0] ∩Kc.

The claim follows.

It is easily checked56 that if a ∈ Z and a > a∗, then for γ > 0 we have
r(B(a; û[γ])) < r(B(a∗;u)) = 1, where the latter equality holds by Remark 5. There-
fore, by Proposition 1, no point on the ray Z outside K is Pareto efficient for γ > 0.
This combined with Claim 1 shows that IR[γ] ∩ PE[γ] ⊆ K, and therefore (since F is
Pareto efficient and individually rational) it follows that a(k) ∈ K for all k.

As a result we can find a sequence (j(k))k such that the sequence
(
a(j(k))

)
k

con-

verges to some a. Define a(k) = a(j(k)) and set û(k) = û[1/j(k)]. Note that the û(k)

converge uniformly to û[0] on K and, indeed, on any compact set (thus, they con-
verge compactly to û[0]). By upper hemicontinuity of F , it follows that a ∈ F (û[0]).
It remains only to show that a = a∗, which we now do.

55Otherwise, a∗ would not have been Pareto efficient under u: moving in the direction a would
have yielded a Pareto improvement. But a∗ is Pareto efficient – see Remark 5.

56We do a very similar calculation below.
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If a /∈ Z, then it is easy to see that for large enough k, we would have û
(k)
i (a(k)) < 0

for some i. This would contradict the hypothesis that F is individually rational. Thus,
a(k) → ζa∗ for some ζ ≥ 0. If ζ = 0 then inspection of the definition of û[γ] shows
that eventually a(k) is not Pareto efficient for preferences u(k). But that contradicts
the Pareto efficiency of F . So assume ζ > 0. In that case we would have:

Jij(a
(k);u(k))→

{
ζJij(a

∗;u) if j = i

Jij(a
∗;u) otherwise.

Thus,
B(a(k);u(k))→ ζB(a∗;u).

Recall from Remark 5 that B(a∗;u) = 1. Since the spectral radius is linear in scaling
the matrix and continuous (recall Remark 3), it follows that

r(B(a(k);u(k)))→ ζ,

By the Pareto efficiency of F , we know that r(B(a(k);u(k))) = 1 whenever a(k) is
interior57, which holds for all large enough k since ζ 6= 0. Thus ζ = 1. It follows that
a = a∗ and the proof is complete.

A.5 Proof of the Centrality Characterization of Lindahl
Outcomes

Proof of Theorem 2 in Section 5.2: First, we show (i) implies (ii). Suppose
a∗ ∈ Rn

+ is a nonzero Lindahl outcome. Lemma 1 in Section A.3 above implies that
a∗ ∈ Rn

++ – that is, a∗ has only positive entries. Let P be the matrix of prices in
the modified definition of a Lindahl outcome (Definition 12). Consider the following
program for each of i ∈M , denoted by Πi(P):

maximize ui(a) subject to a ∈ Rn
+ and B̂Bi(P).

By definition of a Lindahl outcome, a∗ solves Πi(P). By Assumption 3, which says
there is always some aj whose increase makes i better off, the budget balance con-

straint B̂Bi(P) is satisfied with equality, so that Pa∗ = 0. Because a∗ is interior,
the gradient of the maximand ui must be orthogonal to the constraint set given by
B̂Bi(P). In other words, row i of J(a∗) is parallel to row i of P. These facts together
imply J(a∗)a∗ = 0.

The equivalence of (ii) and (iii) follows immediately from the definitions.

Finally, we claim that (iii) implies (i). Since a∗ is a nonnegative right-hand eigen-
vector of B(a∗), the Perron-Frobenius Theorem guarantees that 1 is a largest eigen-
value of B(a∗). Arguing as in the proof of Proposition 1, we deduce that there is a
nonzero vector θ for which θJ(a∗) = 0. We need to find prices supporting a∗ as a

57Recall Remark 5 again.
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Lindahl outcome. Define the matrix P by Pij = θiJij(a
∗) and note that for all j ∈ N

we have ∑
i∈N

Pij =
∑
i∈N

θiJij(a
∗) = [θJ(a∗)]j = 0, (17)

where [θJ(a∗)]j refers to entry j of the vector θJ(a∗).
Note that B(a∗)a∗ = a∗ implies J(a∗)a∗ = 0 and each row of P is just a scaling

of the corresponding row of J(a∗). We therefore have:

Pa∗ = 0. (18)

and these prices satisfy budget balance.
We claim that, for each i, the vector a∗ solves Πi(P). This is because the gradient

of ui at a∗, which is row i of J(a∗), is normal to the constraint set by construction of

P and by (18) above, a∗ satisfies the constraint B̂Bi(P). The claim then follows by
the concavity of ui.

A.6 The Zero Action Profile as a Lindahl Outcome

Proposition 8. The following are equivalent:

(i) r(B(0)) ≤ 1;

(ii) 0 is a Pareto efficient action profile;

(iii) 0 is a Lindahl outcome.

Proof of Proposition 8: Proposition 2 establishes the equivalence between (i) and
(ii).

(ii)⇒ (iii): The construction of prices is exactly analogous to the proof of Theorem
2 in Section A.5; the only difference is that rather than the Pareto weights, we use
Pareto weights adjusted by the Lagrange multipliers on the binding constraints ai ≥ 0.

(iii)⇒ (ii): The standard proof of the First Welfare Theorem goes through without
modification; see, e.g. Foley (1970).

A.7 Proof of Proposition 5: Characterization of Eigenvector
Centrality Action Profiles via Walks

Let W↑i (`;M) be the set of all walks of length ` in a matrix M such that w(1) = i
– that is, the set of walks starting at i. The proof follows immediately from the
following observation.

Fact 5. For any irreducible, nonnegative matrix Q, and any i, j

pi
pj

= lim
`→∞

∑
w∈W↑

i (`;Q) v(w;Q)∑
w∈W↑

j (`;Q) v(w;Q)
,

where p is any nonnegative right-hand eigenvector of Q (i.e. a right-hand Perron
vector in the terminology of Section 2.4).
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To prove the proposition from this fact, set Q = B(a) = MT and note that then
the right-hand side of the equation in Fact 5 is equal to the right-hand side of the
equation in Proposition 5. The statement that a is an eigenvector centrality action
profile is equivalent to the statement that a is a right-hand Perron eigenvector of
Q = B(a).

Proof of Fact 5. Note that the formula above is equivalent to

pi
pj

= lim
`→∞

∑
k

[
Q`
]
ik∑

k [Q`]jk
, (19)

where
[
Q`
]
ik

denotes the entry in the (i, k) position of the matrix Q`. To prove (19),
let ρ = r(Q) and note that

lim
`→∞

(Q/ρ)` = wTp, (20)

where w is a left-hand Perron vector of Q, and p is a right-hand Perron vector
(recall Setion 2.4). This is statement (8.3.13) in Meyer (2000); the hypothesis that
Q is primitive in that statement follows from the assumed aperiodicity of Q (see
Theorems 1 and 2 of Perkins (1961)). To conclude, observe that (20) directly implies
(19).

A.8 Existence of a Lindahl Outcome

Proof of Proposition 6 in Section 7.1: We will use the Kakutani Fixed Point
Theorem to find a Lindahl outcome. Define Y = {a ∈ Rn

+ : mini[J(a)a]i > 0}, the
set of action profiles a at which everyone has positive gains from scaling. It is easy to
check that Y is convex.58 Also, Y is bounded by Assumption 4. Thus, Y , the closure
of Y , is compact.59

Define the correspondence F : Y \ {0}⇒ Y by

F (a) = {za ∈ Y : z ≥ 0 and min
i

[J(za)a]i ≤ 0}.

Finally, recalling the definition of deg(a) from Section 3.3, define the correspondence
G : Y ⇒ Y by

G(a) = F (deg(a)).

Note that deg(a) is always nonzero, so that the argument of F is in its domain.60

The function deg is continuous (Wilkinson, 1965, pp. 66–67), and F is clearly upper

58Given a,a′ ∈ Y and λ ∈ [0, 1], consider a′′ = λa+ (1−λ)a′. Note that for all i ∈ N and ε ≥ −1

ui((1 + ε)a′′) ≥ λui((1 + ε)a) + (1− λ)ui((1 + ε)a′)

by concavity of the ui. Differentiating in ε at ε = 0 yields the result.
59It is tempting to define Y = {a ∈ Rn+ : mini[J(a)a]i ≥ 0} instead and avoid having to take

closures; but this set can be unbounded even when Y as we defined it above is bounded. For example,
our assumptions do not exclude the existence of an (infinite) ray along which mini[J(a)a]i = 0.

60Note that even though the domain of F is not a compact set, G is a correspondence from a
compact set into itself.

46



hemicontinuous, so it follows that G is upper hemicontinuous. Finally, from the
definitions of Y and F it follows that F is nonempty-valued.61 Since Y is a compact
and convex set, the Kakutani Fixed Point Theorem implies that there is an a ∈ Y
such that a ∈ F (deg(a)). Writing â = deg(a), this means that there is some z ≥ 0
such that mini[J(zâ)â]i ≤ 0. Let a∗ = zâ. We will argue that a∗ is a Lindahl outcome.

Suppose a∗ 6= 0. Then by continuity of the function z 7→ J(zâ)â, there is some
i for which we have [J(a∗)â]i = 0 – i.e., some player’s marginal benefit to scaling is
equal to marginal cost. Since â is an egalitarian direction at the action profile a∗,
the equation [J(a∗)â]i = 0 must hold for all i, and therefore J(a∗)â = 0. Since â and
a∗ are parallel, we deduce J(a∗)a∗ = 0 and Theorem 2 shows that a∗ is a Lindahl
outcome. The condition J(a∗)a∗ = 0 along with Assumption 3 – irreducibility –
imply that a∗ ∈ Rn

++.
If a∗ = 0, then the bang for the buck b(0, â) of starting at 0 and moving in

the egalitarian direction â is no greater than 1 – otherwise, F (â) would not contain
a∗ = 0. By Proposition 3, it follows that r(B(0)) ≤ 1. Then 0 is a Lindahl outcome
by Proposition 8.

A.9 Proofs of Minor Facts

Proof of Fact 1 in Section 3.4.2: Consider the submatrix L obtained by leaving
only indices in the cycle c. Note L` has diagonal entries, and hence row sums, bounded
below by v(c;M). Then by Meyer (2000, p. 497) it follows that ρ(L`) ≥ v(c;M),
and by Fact 3 in Section 3.4.3 that ρ(M`) ≥ v(c;M). The desired result then follows
because ρ(M`) = ρ(M)` for any nonnegative matrix. (By Perron-Frobenius there is
always a real and positive eigenvalue equal to the spectral radius; moreover, λ is an
eigenvalue of M if and only if λ` is an eigenvalue of M`.)

61Toward a contradiction, take a nonzero a such that F (a) is empty. Let z be the maximum z
such that za ∈ Y ; such a z exists because a is nonzero and Y is compact. Since J(za)a > 0 it
follows that for all i,

dui((1 + ε)za)

dε

∣∣∣∣
ε=0

> 0,

from which it follows that (z+δ)a ∈ Y for small enough δ. This contradicts the choice of z (recalling
the definition of Y ).
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