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Abstract

I study games of ex-ante symmetric uncertainty about a payoff-relevant state variable.

In these games, a long-run player and a population of small players learn about a hidden

state from a public signal that is subject to Brownian shocks. The long-run player can

influence the small players’ beliefs by affecting the publicly observable signal or by affecting

the hidden state itself, in both cases in an additively separable way. The impact of the small

players’ beliefs on the long-run player’s payoffs is nonlinear. I derive necessary conditions

for Markov Perfect Equilibria in public beliefs that take the form of ordinary differential

equations (ODEs). These ODEs capture how the long-run player’s equilibrium actions

optimally balance the size of marginal flow payoffs, cost-smoothing motives and ratchet

forces, across different levels of public beliefs. I obtain verifiable sufficient conditions that

ensure that a solution to this ODE is an equilibrium, and use them to show the existence of

equilibria in environments where the underlying fundamental is a Gaussian process. Finally,

I develop applications to evaluate monetary policy under partial information, to analyze

government’s incentives to manipulate official statistics, and to study reputation dynamics

in labor markets.
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1 Introduction

This paper develops a new class of continuous-time games for analyzing incentives in
settings where agents learn about the relevant economic environment. In these games,
a long-run player and a population of small individuals share a common prior regard-
ing the initial value of a hidden state variable, and subsequently learn about its future
evolution from a public signal that is subject to Brownian shocks. The long-lived player
can nevertheless control the small players’ beliefs about the unobserved state by taking
costly hidden actions that affect the evolution of the public signal. Using continuous-time
techniques, I study the actions that the long-run player takes in any equilibrium in which
the small players perfectly anticipate his behavior, and thus beliefs remain aligned.

Strategic behavior driven by both imperfect observability of an agent’s actions and
incomplete information about the environment is pervasive in economics. In labor mar-
kets, when wages are based on perceived ability, workers exert effort in an attempt to
manipulate their employers’ beliefs about their unobserved skills (Holmstrom (1999)).
Similarly, when the value a product is given by the public perception of its unobserved
quality, a firm’s investment policy will depend on the nature of the learning process of
its costumers (Board and Meyer-ter-Vehn (2013)). In monetary policy, imperfect control
over money growth allows a central bank to surprise an economy with high inflation when
the population learns about the policymaker’s preferences for stimulating the economy
(Cukierman and Meltzer (1986)).

Unlike most of the existing literature on dynamic games of incomplete information,
this paper is concerned with environments in which all agents are uncertain about the
economic environment.1 Two-sided learning and moral hazard appears when both a poli-
cymaker and a population of individuals learn about unobserved components of inflation,
and monetary policy has imperfect control. It also arises when a government secretly
manipulates inflation statistics in an attempt to anchor expectations about a hidden in-
flation trend. Similarly when a contractor and a government learn about the contractor’s
efficiency to deliver goods, and the contractor takes unobserved actions to affect per-
formance. The methods developed in this paper are crucial for our understanding of
dynamic incentives in settings where (i) there is ex-ante symmetric uncertainty about a
payoff-relevant variable, and where (ii) imperfect monitoring gives rise to incentives that
are driven by the possibility of affecting the perceptions of others.

Quantifying the incentives that arise in these environments imposes a host of technical
challenges. In the class of games I analyze, the long-run player’s payoffs are determined
by the small players’ actions, which in turn depend on their beliefs about the hidden state.
Starting from a common prior, if the small players anticipate the long-run player’s actions,
public and private beliefs will remain aligned. However, the long-run player’s incentives
on the equilibrium path are determined by the benefits from hypothetical deviations off
the equilibrium path. Evaluating the long-run player’s off-equilibrium payoffs is difficult
for two reasons. First, after a deviation takes place the long-run player acquires private
information about the evolution of the unobserved state.2 Second, and most importantly,
off the equilibrium path the small players’ beliefs become biased. The long-lived agent

1The most notable exception is Holmstrom (1999).
2This private information is persistent and changes stochastically over time, as it is driven by a

learning process.
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can thus condition his actions on the values that both private and public beliefs take, and
the small players will construct beliefs using a wrong conjecture about equilibrium play.

I focus on Markov Perfect Equilibria (MPE) in pure strategies, with key state variables
being the long-run player’s private belief about the hidden state, and the belief-asymmetry
process, which is a measure of the degree of discrepancy between private and public beliefs.
In such a context, I develop a first-order approach for quantifying the value of a local
deviation off the equilibrium path, which ultimately determines the long-run player’s
incentives on the margin. More specifically, I show that in any MPE in which beliefs
remain aligned, the value that the long-run player attaches to inducing a small degree of
asymmetry between private and public beliefs is the solution to an ordinary differential
equation (ODE), which I refer to as the incentives equation. The incentives equation
captures how the incentives to distort public beliefs vary across different levels of public
opinion. Such variations occur when learning, the long-run player’s preferences or the
small players’ actions are nonlinear.

This equation is of considerable importance. From an economic perspective, it delivers
in a strikingly clean way all the forces that drive belief manipulation motives. From a
computational perspective, it reduces the problem of computing Markov perfect equilibria
from solving a complex partial differential equation (PDE), to computing solutions of a
nonlinear ODE. From a technical perspective, it transforms the problem of checking global
incentive compatibility (and thus, the problem of existence of MPE), to the problem of
finding solutions to an ODE that must also satisfy some additional properties. Further-
more, this equation is obtained under very weak assumptions, with no major restrictions
imposed on the functional form that payoffs can take. Two assumptions are nonetheless
important. First, I restrict to learning processes that admit posterior distributions sum-
marized by a one-dimensional state variable. Second, the long-run player’s actions enter
in an additively separable way into the corresponding dynamics.3

The generality of the methods developed in this paper – mostly driven by the ad-
vantage of continuous-time methods over traditional ones – makes them applicable to a
wide range of economic environments. Furthermore, they enable us to address applied
questions for which we did not have tools in the past. In Section 3, I study models of
commitment in settings where agents have partial information about the relevant envi-
ronment. For instance, if agents learn about unobserved components of inflation, what
are the inefficiencies generated by a government that manipulates inflation statistics in
an attempt to control the market’s expectations about future inflation?4 Or how does the
inflationary bias introduced a policymaker who lacks commitment depend on the charac-
teristics of the market’s learning process? The difficulty in analyzing these environments
is lies on the fact that a government’s or policymaker’s payoffs are best modeled as non-
linear functions of the belief about the unobserved state. Instead, the existing literature
allowing for two-sided learning has analyzed value-creation in fairly linear environments.
In the linear and additive model of career concerns developed by Holmstrom (1999), work-
ers with the same tenure exert identical effort levels, despite their differences in perceived

3The first assumption is purely for tractability reasons. Relaxing the second one either introduces
experimentation motives (something beyond the scope of this paper), or it conflicts the first assumption,
as the learning present in the model requires keeping track of distributions.

4Manipulation of an official inflation statistic was documented by Cavallo (2012) for the case of
Argentina.
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abilities or wages. In the reputation model of Board and Meyer-ter-Vehn (2013), a firm’s
investments in quality are independent of its private information about current quality.
As we move away from these tractable frameworks, incentives will depend on the value
of becoming (hypothetically) privately informed, and such value will vary across different
levels of public beliefs.

The incentives equation, as a necessary condition for equilibrium behavior, does not
ensure that the long-run player does not benefit from inducing a large degree of belief
asymmetry. In order to verify incentive compatibility globally, it is necessary to study the
long-run player’s payoffs for deviations of any size. Intuitively, the long-run player will
engage in “double deviations” when he can exploit the benefit of being privately informed
about the unobserved state. For the case of Gaussian learning I derive a verification
theorem (Theorem 4.4) that states conditions under which a solution to the incentives
equation is effectively a MPE, with the main condition precisely pertaining to a bound
on the information rent that the long-run player can obtain if a deviation takes place. In
Section 5 I verify analytically that this condition holds in the case in which the long-run
player’s marginal flow payoff is bounded and the underlying fundamental is a Brownian
martingale, provided there is some discounting. Beyond this case, the corresponding
condition can be verified ex-post on any numerical solution to the incentives equation.

For settings beyond the one just described, one can directly investigate the long-run
player’s value function. Interestingly, this function satisfies a new type of PDE charac-
terized by its particular nonlocal structure: the local evolution of the long-run agent’s
utility off the equilibrium path depends on the marginal value of belief asymmetry along
the equilibrium path. This is because the signal structure satisfies the full support as-
sumption, so the small players always construct beliefs as if the long-run player had never
deviated. This new class of PDEs correspond to a standard Hamilton-Jacobi-Bellman
(HJB) equations that also satisfy the requirement that the small players must antici-
pate the long-run player’s actions on the equilibrium path. Since the latter requirement
corresponds an additional constraint on HJB equation, classic verification theorems apply.

I use this insight to show the existence of a linear MPE for a class of games with
linear-quadratic structure (linear learning and quadratic payoffs) in which the mentioned
PDEs admit analytic solutions. I exploit the tractability of this linear-quadratic frame-
work in two applications. First, I show that once people recognize the possibility that a
government can secretly manipulate inflation statistics to control people’s expectations,
the government of a high-inflation economy can become trapped into this type of ma-
nipulation, and even during recessions. Second, in an exercise that analyzes the role of
monetary policy in affecting unobserved components of inflation, I determine how the size
of the inflationary bias created by a central bank depend on key parameters of the mar-
ket’s learning process. In particular, when both the policymaker’s control worsens and
prices become less rigid, the incentives to surprise the economy with inflation decrease.

The paper is organized as follows. In Section 2 I study the class of games in general
form, and derive necessary conditions for equilibrium behavior. Section 3 discusses ap-
plications and extensions of the methods presented in Section 2. Section 4 presents two
verification theorems (sufficient conditions). Section 5 studies games of Gaussian learning
and uniformly bounded marginal flow payoffs. Section 6 is devoted to studying games
with a linear-quadratic structure. Section 7 concludes. All proofs are relegated to the
Appendix.
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1.1 Literature

Models of reputation in labor markets are a natural application of the class of games
studied here. Holmstrom (1999) develops a linear and additive model of career concerns in
which equilibrium effort depends only on tenure, and hence are independent of the worker’s
history (i.e. reputation). In the static model of Dewatripont et al. (1999), introducing
complementarities between effort and skills in the output technology generates strategic
complementarity between realized effort and conjectured effort. More recently, Bonatti
and Hörner (2013) show how current and future effort can become strategic substitutes.
More generally, the incentives equation states that equilibrium incentives will depend on
a worker’s past performance, on how reputation is expected to evolve over time (thus
connecting effort decisions across time) and on the possibility of affecting the market’s
contemporaneous conjecture of equilibrium play. Finally, both Kovrijnykh (2007) and
Martinez (2009) study discrete-time finite-horizon models of career uncertainty in which
the necessary conditions for equilibrium incentives they derive depend on the worker’s
reputation. However, unlike in my paper, the question of global incentive-compatibility
(and consequently, the validity of the first-order approach) is not addressed.

In the context of investment games with learning, Board and Meyer-ter-Vehn (2013)
study a firm’s reputation dynamics when the quality of a product is unobserved by its
customers. In their model, the investment policy depends on the type of learning of its
customers (good news or bad news), yet is independent of the firm’s private information
about quality. Board and Meyer-ter-Vehn (2010) obtain necessary conditions for a firm’s
investment policy in a model that extends the previous one by allowing for exit. In the
case in which the firm is also learning about its product, investment depends on the value
of inducing belief asymmetry, which now takes an integral form as valuations can jump.

This paper is also related to the literature on optimal contracts in environments where
actions have persistence, in the sense that deviations generate a wedge between the agent’s
and the principal’s perceived distribution of all future payoff-relevant variables. In De-
Marzo and Sannikov (2011), Jovanovic and Prat (2013) and He et al. (2014) output
carries noisy information of both the firm’s unobserved fundamentals and the agent’s hid-
den actions, and optimal contracts under specific functional forms are derived. Finally,
the necessary and sufficient conditions for equilibrium incentives that I derive are similar
to the ones derived both by Williams (2011) in a context of persistent private information,
and by Sannikov (2014) in a setting where actions have long-term impact on performance,
in the characterizations of their optimal contracts. In all these settings time is continuous
and additive separability is a crucial assumption.

To conclude, this paper contributes to the study of dynamic incentives using continuous-
time techniques. In particular, I exploit the connection of stochastic control with the
theory of differential equations to considerably expand the class of environments with in-
complete information that can be analyzed. Two related papers studying continuous-time
games between a large player and a continuum of small players are Faingold and Sannikov
(2011) and Bohren (2014). The first paper studies reputation dynamics in settings with
imperfectly observable actions and one-sided learning about the large player’s fixed type.
Bohren (2014) analyzes a general class of investment games with imperfectly observable
actions but without learning. In both papers the equilibrium analysis is simplified by the
fact that there is only one payoff-relevant variable.
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2 Signal Manipulation Games: General Case

2.1 Set-up

Consider an economy in which one long-run player and a population of small players
simultaneously learn about a hidden state variable. The unobserved process is denoted
by θ := (θt)t≥0 and it takes values in Θ ⊆ R. Hereinafter I refer to the hidden state
variable as the fundamentals.

In a signal-jamming game fundamentals are exogenous, and the long-run player affects
the signal from which the small players extract information about the unobserved state.
More specifically, there is public signal ξ := (ξt)t≥0 that takes the form

dξt = (at + θt)dt+ σξdZt, t ≥ 0, (1)

where Z := (Zt)t≥0 is a Brownian motion independent of θ, and σξ > 0 is a volatility
parameter. The term at represents the degree of signal manipulation exerted by the long-
lived player at time t ≥ 0. The long-run player’s manipulation choices are not observed
by the rest of the economy and they take values in a set A ⊂ R. Observe that the signal
structure (1) satisfies the full-support assumption with respect the the long-run player’s
actions.

Notice that the long-run player effectively observes the component of the public signal
that is not explained by signal manipulation, Yt := ξt −

∫ t
0
asds, t ≥ 0. By definition

dYt = θtdt+ σξdZt, t ≥ 0, (2)

from where we can see that Y is an exogenous process that is privately observed by the
long-run agent. Equations (1) and (2) yield that signal manipulation has an additive
structure in this paper. In the sequel, FYt denotes the information generated by the
process Y up to time t, and FY := (FYt ) the (completed) filtration associated to Y . The
corresponding analogous notation is used to denote the filtration generated by ξ.

The long-run player uses the information conveyed by Y to construct private beliefs
about θ. The private beliefs process is denoted by ρ := (ρt)t≥0 where

ρt(x) := P(θt ≤ x|FYt ), x ∈ Θ, t ≥ 0. (3)

In this definition, P(·|FYt ) corresponds to the long-run player’s posterior belief about θt
given the observations (Ys : s ∈ [0, t]), constructed via Bayes rule, t ≥ 0.

The small players use the information conveyed by the public signal ξ to learn about
the fundamentals. The public belief process is denoted by ρ∗ := (ρ∗t )t≥0 and defined by

ρ∗t (x) := P∗(θt ≤ x|F ξt ), x ∈ Θ, t ≥ 0, (4)

where P∗(·|F ξt ) denotes the small players posterior belief about θt given the partial obser-
vations (ξs : s ∈ [0, t]) (constructed using Bayes rule) given their subjective belief about
the distribution of ξ, as the latter depends on their conjecture of equilibrium play. Private
and public beliefs coincide if, for instance, the small players have perfectly anticipated
the long-run players past actions. However, moral hazard can give rise to potential diver-
gence between private and public beliefs. I assume that ρ0(·) = ρ∗0(·), so there is ex-ante
symmetric uncertainty about the initial state of the underlying fundamental.
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The small players act myopically because their individual actions are anonymous and
they do not affect the population average observed by the long-run agent. Thus, at any
instant of time the small players maximize their ex-ante flow payoffs. Ex-ante flow payoffs
in turn depend on the small player’s beliefs about the current value of the underlying
fundamental θt, and on the action that they conjecture the long-run player is currently
following, a∗t , t ≥ 0. I summarize the small players’ actions in the best-response function

b(ρ∗t , a
∗
t ), t ≥ 0.

The small player’s actions affect the long-run player’s flow payoff. Hence, the long-run
player cares about the fundamentals to the extent that they influence the small player’s
learning process. Given any strategy b := (bt)t≥0 of the small players and any manipulation
strategy a := (at)t≥0, the long-run player’s payoffs at time t take the form∫ ∞

t

e−r(s−t)(u(bs)− g(as))ds, t ≥ 0. (5)

The function u : R → R represents the component of the long-run player’s flow utility
that is affected by the small player’s actions. The cost of manipulation is given by a
differentiable function g : A→ R which is convex and that satisfies g(0) = 0.5

As it is traditional in the literature of stochastic control, I allow for both strategies
and conjectured strategies to satisfy mild integrability conditions:

Definition 2.1. A manipulation strategy a := (at)t≥0 is said to be feasible if it corresponds
to a progressively measurable process with respect to the information generated by (ξ, Y ),
also satisfying the integrability condition

E
[∫ t

0

a2
sds

]
<∞, ∀t ≥ 0. (6)

A conjecture a∗ := (a∗t )t≥0 is said to be feasible if it corresponds to a progressively measur-
able process with respect to the information generated by ξ that also satisfies (6). In both
cases, E[·] corresponds to the expectation operator under the long-run player’s probability
measure of events.

With this in hand, we can define the equilibrium concept:

Definition 2.2. An equilibrium consists of (i) a feasible manipulation strategy of the
long-run player at(ξs, s ∈ [0, t], ρt), t ≥ 0; (ii) a public strategy of the small players
bt(ξs, s ∈ [0, t]), t ≥ 0; (iii) a private belief process ρt(·|Ys, s ∈ [0, t]), t ≥ 0; and (iv) a
public belief process ρ∗t (·|ξs : s ∈ [0, t]), t ≥ 0, such that:

(a) The strategy a := (at)t≥0 maximizes the long-run player’s continuation payoff

Et
[∫ ∞

t

e−r(s−t)(u(bs)− g(as))dt

]
, (7)

given the small player’s public strategy (bt)t≥0 and the long-run player’s belief process
ρ := (ρt)t≥0, after any history (ξs : s ∈ [0, t], as, s ∈ [0, t]), t ≥ 0;

5Provided that ex-ante payoffs can be written as some function of the private and public beliefs, the
analysis that follows can be extended to situations in which the long-run player’s flow payoff u(·) also
depends on the current state of θ.
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(b) bt = b(ρ∗t , a
∗
t ) for some measurable function b, which is optimal given ρ∗t and the

action a∗t (ξs, s ∈ [0, t]) = at(ξs, s ∈ [0, t], ρ∗t ), t ≥ 0;

(c) The long-run player’s beliefs ρt = ρt(·|Ys, s ∈ [0, t]) are determined by Bayes’ rule;

(d) The small player’s beliefs ρ∗t = ρ∗t (·|ξs, s ∈ [0, t]) are determined by Bayes’ rule under
the assumption that the long-run player has been following the strategy a∗t (ξs, s ∈
[0, t]) = at(ξs, s ∈ [0, t], ρ∗t ).

Observe that the histories of the form (ξs : s ∈ [0, t], ρt), t ≥ 0, summarize all the
payoff relevant information for the long-run player, so we can restrict the set of feasible
manipulation strategies to feasible strategies as in (i). Part (ii) instead requires that the
small player’s actions depend on the information generated by ξ only.

Concerning the equilibrium conditions, (a) states that the long run player’s strategy
specifies actions both on and off the equilibrium path, and has to maximize future payoffs
on and off the equilibrium path. In contrast, the optimality of the small player’s actions is
checked only on the equilibrium path (condition (b)), as the full support assumption makes
any partial observation (ξs : s ∈ [0, t]), t ≥ 0, consistent with equilibrium play. Condition
(c) and (d) correspond to the consistency requirements that both belief processes ρ and
ρ∗ must be constructed via Bayes’ rule using the strategies specified by equilibrium play.
In particular, (d) states that the small player’s beliefs are always constructed as if the
long-run player is effectively following the strategy prescribed on the equilibrium path.

2.2 Learning and Belief Manipulation

In this section I present a unified approach for studying belief manipulation dynam-
ics in settings where the posterior distributions ρ and ρ∗ can be summarized by one-
dimensional diffusions. Such settings correspond to fundamentals in the form of Gaussian
diffusions, or in the form of two-state Markov-switching processes.6 This general approach
reveals that it is the additively separable technology – rather than the particular nature of
fundamentals– the key assumption behind the characterization of incentives in the form
of ODEs.7

2.2.1 Unidimensional Learning Processes

Definition 2.3. (Linear and Nonlinear Unidimensional Learning Processes).

(i) A private learning process is said to be linear (or Gaussian) if fundamentals evolve
according to an Ornstein-Uhlenbeck process of the form

dθt = −κ(θt − η)dt+ σθdZ
θ
t , t ≥ 0, (8)

the signal process is given by (2), and the initial prior θ0|F0 is normally distributed.

6Going beyond these two classes the analysis becomes intractable, or the set of one-dimensional
sufficient statistics cease to have economically meaningful interpretations.

7For instance, if posterior distributions are summarized by a finite set of one-dimensional state vari-
ables, incentives will be characterized by a multidimensional equation.
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(ii) A private learning process is said to be nonlinear if fundamentals θ evolve as a two-
state Markov chain and the signal structure is given by (2). That is, there exist
` < h ∈ R such that θ takes values in Θ = {h, `}, and there is a generator matrix

Λ :=

[
−λ1 λ1

λ0 −λ0

]
, (9)

where λi corresponds to the transition rate from state i to state j, i, j ∈ {`, h}.

Public learning processes are defined analogously replacing Y by ξ defined in (1).

�

The next result states that for the learning structures defined above, there is a unique
one-dimensional diffusion p := (pt)t≥0 taking values in R that contains all the statistical
information conveyed by ρ:

Lemma 2.4. (Law of motion of private beliefs). Suppose that the long-run player’s
learning structure is either linear or nonlinear. Then, in each case, there exist a function
µ : R→ R, a time-dependent function (σt)t≥0 and a FY -Brownian motion ZY := (ZY

t )t≥0

such that the diffusion

dpt = µ(pt)dt+ σtdZ
Y
t , p0 = po (10)

takes values over the entire real line, and is a sufficient statistic for ρ. More specifically:

(L) When learning is linear, pt := E[θt|FYt ], t ≥ 0, µ(p) = −κ(p − η), p ∈ R, σt = γt
σξ

,

where γt := E[(θt − pt)2|FYt ], t ≥ 0, and ZY
t := 1

σξ

(
Ys −

∫ t
0
psds

)
, t ≥ 0. Moreover,

the posterior variance process γ := (γt)t≥0 solves the ODE γ̇t = −2κγt+σ2
θ −
(
γt
σξ

)2

,

t > 0, γ0 = γ0. The pair (po, γo) is such that θ0|F0 ∼ N (po, γo);

(NL) When learning is nonlinear, we can take pt := log
(

P(θt=h|FYt )

1−P(θt=h|FYt )

)
, t ≥ 0, σt ≡

h−`
σξ
∀ t ≥ 0, µ(p) = λ1

ep+1
ep
− λ0(1 + ep) − (h−`)2

2σ2
ξ

(
1− 2ep

1+ep

)
, p ∈ R, and ZY

t :=

1
σξ

(
Yt −

∫ t
0

eps

1+eps
ds
)

, t ≥ 0. The initial value po is such that po = log
(

P(θ0=h|FY0 )

1−P(θ0=h|FY0 )

)
.

In either case, the process ZY is called an innovation process.

Proof: See the Appendix.

�

Consider first the case of linear learning. Since the system is Gaussian, we have to
keep track of the evolution of the posterior mean and the posterior variance only. They
evolve according to

dpt = −κ(pt − η)dt+
γt
σξ

dYt − ptdt
σξ

, and (11)

γ̇t = −2κγt + σ2
θ −

(
γt
σξ

)2

, t > 0, (12)
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respectively. Learning is said to be linear because pt admits a solution that is linear in
the partial observations (Ys : 0 ≤ s ≤ t), t ≥ 0.

Observe that the posterior mean reverts toward η at the same rate κ ≥ 0. Also, the
response of the posterior mean to signal surprises (captured by the innovation process
ZY ) increases with the size of the mean-square error and decreases with the signal’s
volatility (σξ). This implies that beliefs react more strongly in settings where either
less information has been accumulated, or in settings where signals are more accurate.
The posterior variance in turn evolves in a deterministic way, so its entire trajectory is

perfectly anticipated at time zero. When γo = γ∗ := σ2
ξ (
√
κ2 + σ2

θ/σ
2
ξ − κ), the unique

strictly positive stationary solution of (12), γt ≡ γ∗ for all t ≥ 0, so the posterior mean
follows a time-homogeneous diffusion. In what follows, I assume that this is the case, so
σt ≡ σ is a constant independent of time.8

Finally, when learning is nonlinear πt := P(θt = h|FYt ), t ≥ 0, follows the time-
homogeneous diffusion

dπt = (λ1(1− πt)− λ0πt)dt+
(h− `)πt(1− πt)

σξ

(
dYt − πtdt

σξ

)
, t > 0.

However, working with the log-likelihood ratio process p := (pt)t≥0, allows us to carry
a single generic diffusion dpt = µ(pt)dt + σtdZ

Y
t regardless of the nature of the learning

process.

2.2.2 The Belief-Asymmetry Process

The small players can only use the information conveyed by ξ to construct estimates about
the current value of fundamentals. However, in order to form correct beliefs about the
hidden state, they must undo the bias that the long-run player adds to the public signal.
More specifically, a straightforward adaptation of Lemma 2.4 to the case of public beliefs
yields that, for any feasible conjecture a∗ := (a∗t )t≥0, there exists a process Z∗ := (Z∗t )t≥0

that is a Fξ−Brownian motion from the small player’s perspective such that the process
p∗ := (p∗t )t≥0 given by

dp∗t = µ(p∗t )dt+ σdZ∗t , p0 = po. (13)

is a sufficient statistic for the small players’ learning process. Because the innovation
process Z∗ must capture unexpected realizations of the public signal given the small
players limited information, Z∗ takes the form

Z∗t =
1

σξ

(
ξt −

∫ t

0

(a∗s + Ea∗ [θs|F ξs ])ds

)
, t ≥ 0, (14)

where Ea∗ is the small players’ subjective expectation operator under the assumption
the the long-run player follows a∗. Intuitively, since at any point in time a fraction of
the observed signal is attributable to signal manipulation, only the changes in the public
signal that are unexplained by the manipulation strategy (namely, dξt − a∗tdt) convey
relevant information about the underlying fundamental, t ≥ 0.

8When learning is Gaussian and non-stationary incentives are characterized by a PDE. See Section 3
for an example based on Holmstrom (1999) in which this PDE admits a simple solution.
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The long-run player can affect the small players’ beliefs by controlling the evolution
of the public signal. From his standpoint, the latter evolves according to

dξ = (at + E[θt|FYt ])dt+ σξdZ
Y
t = (at + f(pt))dt+ σξdZ

Y
t , t ≥ 0, (15)

where ZY is his innovation process (Lemma 2.4), and f : R→ R depends on the specific
type of learning process.9 Plugging (15) into (14), and then the resulting process into
(13) yields

dp∗t = [µ(p∗t ) + β(at − a∗t ) + β(f(pt)− f(p∗t ))]dt+ σdZY
t , t ≥ 0, (16)

from the long-run player’s standpoint, where β = σ/σξ.
10

Expression (16) shows how the long-run player can control the small players’ belief. In
particular, after a deviation takes place, the long-run player acquires private information
about the evolution of the public signal (f(p) term), which in turn gives him private in-
formation about the future evolution of public beliefs, and hence about his future payoffs.

Because we are interested in settings in which everyone shares the same uncertainty
regarding the initial value of the underlying fundamental, it is natural to introduce a state
variable that measures the wedge between private and public beliefs:

Proposition 2.5. Suppose that the learning structure is unidimensional, and let (a, a∗)
denote any feasible pair. Then, from the long-run player’s perspective, the small players’
belief process can be written as p∗t = pt + ∆t, t ≥ 0, where the process ∆ := (∆t)t≥0 takes
the form

d∆t = [−φ(pt,∆t) + β(at − a∗t )]dt, t > 0, ∆0 = ∆o, (17)

with φ : R2 → R a function satisfying φ(p, 0) ≡ 0 for all p ∈ R. More specifically:

(L) When learning is linear, φ(p,∆) = (β + κ)∆ and β = σ/σξ = γ∗/σ2
ξ ;

(NL) When learning is nonlinear, φ(p,∆) = −λ1

[
ep+∆+1
ep+∆ − ep+1

ep

]
+ λ0[ep+∆ − ep], and

β = σ/σξ = (h− `)/σ2
ξ .

Proof: Subtract (10) from (16) using the expressions for µ in Lemma 2.4, and the fact
that f(p) = p in the linear learning case and f(p) = ep

ep+1
when learning is nonlinear.

�

Suppose that both parties have the same prior about the initial value of the funda-
mental (∆o = 0) and that the long-run player follows a∗ up to time t. Because φ(p, 0) = 0,
beliefs will remain aligned up to instant. If at time t the long-run player decides to ma-
nipulate the signal above (below) the small players’ expectations, he will become more
(less) pessimistic than the small players about the current value of fundamentals.

9f(p) = p in the linear learning case and f(p) = ep

ep+1 when learning is nonlinear.
10In the linear case, and as long as a∗t takes the form a∗(p∗t ) for some globally Lipschitz function a∗(·),

the integrability condition in Definition 2.1 is enough to ensure the existence and uniqueness of a strong
solution to (16), for any feasible strategy a := (at)t≥0 (Theorem 1.3.15 in Pham (2009)). Hence, (16) is
a well-defined object. See Sections 4 and 5 for more details.
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Two final observations. First, because as time evolves past information becomes less of
a good prediction of current fundamentals, belief discrepancies have an inherent tendency
to disappear. More specifically, any stock of belief asymmetry resulting from a one-shot
deviation from a∗ at time t vanishes locally at a speed equal to |φ(pt,∆t)|, t ≥ 0. Second,
observe that the small players’ conjecture of equilibrium play acts as a threshold that the
long-run player has to exceed in order to induce more belief asymmetry. Thus, in any
equilibrium in which beliefs remain aligned, the small players construct beliefs using a
strategy a∗ such that, if the long-run player over-manipulates the public signal, the benefit
from both boosting perceived fundamentals and having private information about it does
not compensate the additional cost of effort; and if the long-run player under-manipulates,
the loss in his payoffs outweighs both the savings from the under-manipulation, and the
benefit from having private information about the hidden state.

2.3 Markov Perfect Equilibrium: Necessary Conditions

2.3.1 Markov Perfect Equilibrium

From the previous section, there exist a private beliefs process p := (pt)t≥0 and a belief
asymmetry process ∆ := (∆t)t≥0, both taking values over the entire real line, and that
fully summarize the long-run player’s and the small players’ beliefs ρ := (ρt)t≥0 and
ρ∗ := (ρ∗t )t≥0. Their laws of motion take the form

dpt = µ(pt)dt+ σdZY
t , p0 = po, and (18)

d∆t = [−φ(pt,∆t) + β(at − a∗t )]dt, t > 0, ∆0 = ∆o, (19)

where µ, σp, φ and β are given in Lemma 2.4 and Propositions 2.5. While the long-
run player’s private belief evolves exogenously, he effectively controls the degree of belief
asymmetry. In the sequel, I assume that the small players’ best-response is of the form
b(p∗, a∗) and observe that b(p∗t , a

∗
t ) = b(pt + ∆t, a

∗
t ), t ≥ 0.

I restrict the analysis to pure strategies, which implies that the small players will
perfectly anticipate the long-run players’ realized actions when starting from a common
prior. Since p = p∗ is the unique payoff-relevant state variable on the equilibrium path,
it is natural to study Markov Perfect Equilibria (MPE) in p∗.

Definition 2.6. A measurable function a∗ : R → A is a MPE if there exists a tuple
(a, b, p, p∗) consisting of a manipulation strategy of the long-run player a := (at)t≥0, a
public action profile of the small players b := (bt)t≥0, a private belief process p := (pt)t≥0,
and a public belief process p∗ := (p∗t )t≥0 such that

(i) Given any feasible strategy ă := (ăs)s≥0 and any private history (ξs : s ∈ [0, t], ăs : s ∈
[0, t]) that leads to pt = p∗t , the long-run player’s optimal action at time t is of the
form at = a∗(p∗t ), t ≥ 0;

(ii) After all public histories, the small player’s best response function is of the form
bt = b(p∗t , a

∗(p∗t )), t ≥ 0,

(iii) The pair (at, a
∗(pt+ ∆t), 0))t≥0 is feasible and it induces a unique solution ∆ to (17)

defined over the entire real line almost surely,
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and (a, b, p, p∗) satisfies (a)-(d) in Definition 2.2.

Observe that in the previous definition there are no markovian restrictions on the
long-run player’s behavior off the equilibrium path. However, it is natural to conjecture
that the long-lived player’s optimal actions will depend only on the current value that
(p,∆) takes. This is because, once the small players construct beliefs using a markovian
conjecture, the long-run player’s optimization problem becomes one of stochastic control
subject to the dynamics of p and ∆.

2.3.2 Necessary Conditions

Suppose that the small players conjecture that the long-run player’s equilibrium actions
take the form (a∗(p∗t ))t≥0 for some measurable function a∗ : R→ A. Given this markovian
conjecture the long-run player’s problem consists of choosing a manipulation strategy
a := (at(ξs : s ∈ [0, t], pt))t≥0, such that after all private histories the continuation strategy
(as)s≥t maximizes his expected discounted utility

Et
[∫ ∞

t

e−r(s−t)(u(b(ps + ∆s, a
∗(ps + ∆s)))− g(as))ds

]
subject to the dynamics (18) and (19) with initial values (pt,∆t) = (p,∆), for all (p,∆) ∈
R2 and t ≥ 0. I redefine u(b(·, ·)) to be u(·, ·) unless otherwise stated.

Let V a∗(p,∆) denote the long-run player’s value function associated with the previous
problem, which takes a∗ as an input. Then, if an optimal control exists and the value
function is smooth enough, V a∗ satisfies the Hamilton-Jacobi-Bellman (HJB) equation11

rV a∗(p,∆) = sup
a∈A

{
u(p+ ∆, a∗(p+ ∆))− g(a) + µ(p)V a∗

p (p,∆) +
1

2
σ2V a∗

pp (p,∆)

+[−φ(p,∆) + β(a− a∗(p+ ∆))]V a∗

∆ (p,∆)
}
, (p,∆) ∈ R2. (20)

Consequently, if an optimal control α := (αt)t≥0 exists, it has to satisfy

αt = arg max
a∈A
{aβV a∗

∆ (pt,∆t)− g(a)}, t ≥ 0. (21)

Hence, if a MPE a∗ : R→ A exists, the following equilibrium condition must hold:

a∗(p) = arg max
a∈A
{aβV a∗

∆ (p, 0)− g(a)}, p ∈ R. (22)

The following results summarizes the discussion so far:

Proposition 2.7. (Global incentives). Assume that a MPE a∗ : R → A exists and
the associated value function V a∗ is of class C2,1(R2). Then, the long-run player’s value
function V a∗(p,∆) satisfies the partial differential equation (PDE)

rV (p,∆) = sup
a∈A

{
u(p+ ∆, a∗(p+ ∆))− g(a) + µ(p)Vp(p,∆) +

1

2
σ2Vpp(p,∆)

+[−φ(p,∆) + β(a− a∗(p+ ∆))]V∆(p,∆)

}
, (p,∆) ∈ R2 (23)

11Subscripts p and ∆ denote partial derivatives with respect to p and ∆, respectively.
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s.t. a∗(p) ∈ arg max
a∈A
{βV∆(p, 0)a− g(a)}. (24)

�

Observe that the PDE (23)-(24) is non-standard. In addition to having the fixed
point condition (24), this PDE is nonlocal, as the local behavior of the long-run player’s
continuation value around a point (p,∆) depends on the value attached to a marginal
deviation off the equilibrium at the point (p+ ∆, 0). This is clearly seen in regions where
on-path incentives are interior, so the small players use

a∗(p+ ∆) = (g′)−1(βV∆(p+ ∆, 0)).

as their conjecture about equilibrium play. This type of non-localness, and consequently,
this type of PDE, seems to be new.

The PDE (23)-(24) is typically hard to visualize. However, it is possible to extract
properties of equilibrium behavior without the need of fully solving such equation. More
specifically, observe that as long as the long-run player’s actions are interior and beliefs
are aligned, the long-run player’s incentives are driven by V∆(p, 0). The next result derives
a necessary condition for the value attached to inducing a small belief discrepancy in any
equilibrium in which beliefs remain aligned:

Theorem 2.8. (On path behavior) Assume that a MPE a∗ : R→ R exists and that the
associated value function V a∗ is of class C2,1(R2). Furthermore, suppose that at a level of
public beliefs p

(i) on path incentives are interior and

(ii) on path incentives are locally twice continuously differentiable with respect to public
beliefs, i.e., there exists a neighborhood O of p such that a∗(·) ∈ C2(O).

Then, g′(a∗(·)) = βV a∗
∆ (·, 0), where V a∗

∆ (·, 0) satisfies the ODE in p 7→ V∆(p, 0)

r̃(p, V∆(p, 0))V∆(p, 0) = up(p, g
′−1(βV∆(p, 0))) + ua(p, g

′−1(βV∆(p, 0)))
d

dp
g′−1(βV∆(p, 0))

+V∆p(p, 0)µ(p) +
1

2
σ2V∆pp(p, 0), p ∈ O, (25)

with r̃(p, V∆(p, 0)) := r + φ∆(p, 0) + β d
dp
g′−1(βV∆(p, 0)).

Proof : Differentiate the PDE (23)-(24) with respect to ∆ and evaluate at ∆ = 0.

�

Equation (25) is a recursive expression for how the payoff from a hypothetical local
deviation off the equilibrium path varies across different levels of public beliefs, when the
small players are perfectly anticipating the long-run player’s actions. I refer to (25) as the
incentives equation. Because when a MPE exists the corresponding mapping p 7→ V∆(p, 0)
will satisfy this ODE, the incentives equation reduces the problem of finding MPE from
solving a non-standard PDE, to studying the solutions of a nonlinear ODE.
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The incentives equation optimally balances 3 forces – marginal flow payoffs, cost
smoothing and ratcheting– in order to generate an optimal inter-temporal pattern of
manipulation. More specifically, the long-run player must be indifferent between exerting
the last unit of signal manipulation “today” (the right-hand side in (25)) and delaying it
to “tomorrow”. Exerting signal manipulation today is beneficial because it immediately
affects the long-run player’s flow payoffs (first two terms on the right hand side of (25)),
and because it allows him to smooth out the costs of signal manipulation over time (term
p 7→ µ(p)Vp∆(p, 0) + 1

2
σ2
pVpp∆(p, 0)).12 In particular, if the benefits from signal manipula-

tion are expected to change at high rates in the near future, then, because manipulation
costs are convex, it is optimal to start investing in belief distortion today.

Postponing manipulation to an instant later allows the long-run player to save the
costs associated with his investments in belief asymmetry depreciating over time. These
depreciation costs are captured in the rate of return on belief asymmetry

r̃(p, V∆(p, 0)) = r + φ∆(p, 0) + β
d

dp
g′−1 (βV∆(p, 0)) , p ∈ R,

in the left-hand side of (25). Given any fixed discount rate r > 0, the higher r̃(p, V∆(p, 0))
is, the lower the return from manipulating the public belief.

The rate of return r̃ is determined endogenously in equilibrium. Recall that given any
markovian conjecture a(·, 0), the belief-asymmetry process (19) evolves according to

d∆t = [−φ(pt,∆t) + β(at − a∗(pt + ∆t))]dt, t ≥ 0.

Thus, in any MPE in which beliefs remain aligned, a local deviation off the equilibrium
path generates a flow dividend that depreciates (locally) at a rate equal to

∂

∂∆
(φ(p,∆) + βa∗(p+ ∆))

∣∣∣
∆=0

= φ∆(p, 0) + β
∂

∂p
a∗(p)

= φ∆(p, 0) + β
∂

∂p
g′−1(βV∆(p, 0)).

The first term φ∆(p, 0) corresponds to the rate at which belief asymmetry inherently
decays over time as information accumulates. The second term captures the returns from
affecting the standard of manipulation the long-run agent will face in the near future
(ratcheting). In fact, since meeting a high standard is costly for the long-run agent, if the
second term is large, the total return for manipulating public beliefs will be low.13

12The expected rate of change of the marginal value of belief asymmetry satisfies

lim
h→0

Et[V∆(pt+h,∆t+h)]−V∆(pt,∆t)
h

∣∣∣
∆t=0

= [φ(pt, 0) + β(a(pt, 0)− a(pt, 0))]︸ ︷︷ ︸
≡0

V∆∆(pt, 0) + µ(p)Vp∆(pt, 0) +

1
2σ

2Vpp∆(pt, 0) = µ(p)Vp∆(pt, 0) + 1
2σ

2Vpp∆(pt, 0). Hence, this effect connects manipulation choices
across time. Bonatti and Horner (2011) also find that effort decisions are inter-temporally connected,
although in a model of career concerns in which information is coarse.

13When time is discrete, ratchet forces appear two periods ahead, as effort today impacts the public
belief tomorrow, and the latter determines the next period conjecture of equilibrium play. Martinez
(2009) finds this force in a career concerns model of job assignment with piecewise linear wages. In
continuos time, this effect is contemporaneous to current effort choices, through the slope of the small
players’ conjecture of equilibrium play, ∂a

∂p (p, 0).
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The incentives equation is a powerful object. In the next section I develop applica-
tions that exploit the versatility of this equation as a tool for computing Markov perfect
equilibria. The reader interested in the (i) existence of solutions to the incentives equation
and/or in (ii) sufficient conditions that ensure that a solution to the incentives equation
is in fact a MPE can jump to Section 4.

3 The Incentives Equation: Applications

This section presents applications that use, and sometimes extend, the insights and meth-
ods previously presented. The analysis starts with the structure of incentives in linear
environments.

3.1 Reputation in Labor Markets: Career Concerns

Recall the classic model of reputation in labor markets introduced by Holmstrom (1999).
A pool of competitive firms compete for the labor of a risk-neutral worker of unknown
ability. In his formulation, the skills of the worker are Gaussian, either fixed over time or
evolving as a random walk. More generally, in continuous-time, ability θ can be modeled
as a mean-reverting process

dθt = −κ(θt − η)dt+ σθdZ
θ
t , t ≥ 0,

which encompasses the other two specifications. Output ξ := (ξt)t≥0 evolves according to

dξ = (at + θt)dt+ σξdZ
ξ
t , t ≥ 0,

where at denotes effort at t ≥ 0, and Zξ shocks to output beyond the worker control.
Since the pool employers is competitive and no output-contingent contracts can be

written, the flow wage that the worker receives must corresponds to the expected output
flow from the market’s perspective. Using our notation, the market’s action takes the
form

b(a∗t , p
∗
t ) =

Ea∗t [dξt]

dt
= a∗t + p∗t ,

where a∗t is the agent’s equilibrium effort decision at time t, and p∗t = Ea∗ [θt|F ξt ], t ≥ 0.
Away from the steady state level of learning γ∗ the posterior variance evolves determin-

istically, and the incentives equation becomes a partial differential equation on V∆(p, 0, t).
It is easy to see that it takes the form:

[r + δt]V∆(p, 0, t) = 1 +
d

dp
g′−1(βtV∆(p, 0, t))

+V∆p(p, 0, t)[−κ(p− η)] +
(βtσξ)

2

2
V∆pp(p, 0, t)

+V∆t(p, 0, t), (p, t) ∈ R× R+ (26)

where βt := γt/σ
2
ξ , δt := βt+κ+βtg

′−1(βtV∆(p, 0, t)), and the new term V∆t(p, 0, t) captures
how the value attached to inducing belief asymmetry varies as information accumulates
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over time. A guess of the form V∆(p, 0, t) = α(t), reduces the previous PDE to an standard
time-dependent ODE

[r + βt + κ]α(t) = 1 + α̇(t), t ≥ 0.

The solution to this ODE is α(t) =
∫∞
t
e−

∫ s
t (r+κ+βu)duds, which implies that effort takes

the form

g′(a∗t ) = βt

∫ ∞
t

e−
∫ s
t (r+κ+βu)duds, t ≥ 0.

Consequently, there is an equilibrium in which effort depends only on the worker’s tenure,
and not on his reputation.14

The intuition for the result is as follows. Observe that since ξ is additively separable
in effort and skills, the impact of the worker’s output is independent of the worker’s true
ability. Also, since learning is Gaussian, the posterior belief p∗t is a linear function past
output observations. These two observations imply that the impact of the worker’s effort
on all future levels of public beliefs is independent of the worker’s reputation. But since
the wage profile is also a linear function of reputation p∗, the impact of the worker’s effort
on all future levels of wages will be independent the worker’s reputation as well. Finally,
because the extent to which public beliefs respond to new information is captured by the
sensitivity process β, the worker’s incentives will be time-dependent only.

The linearity of Holmstrom’s set up generates particularly simple incentives for belief
manipulation. In particular, since this equilibrium depends on calendar time only, the
worker will find it optimal to exert effort according to the market’s current conjecture of
equilibrium play, even if he had deviated in the past. Hence, the possibility of acquiring
private information about his type has no value for the worker in the model. When all this
linearity is relaxed, the incentives for belief manipulation will vary across the state space.
Moreover, since beliefs have persistence, these incentives will be interconnected across
time as opposed to what occurs in the linear benchmark. Finally, off the equilibrium
path, the long-run player will find it optimal to exploit his private information. But when
an equilibrium exists, any such deviation must be unprofitable.

3.2 Manipulation of Official Statistics

In this application I analyze a government’s incentives to manipulate an official inflation
statistic. A basic requirement for this type of manipulation is the lack of independence of
a country’s monetary authority (or the institution in charge of the creation of such statis-
tic). When this is the case, incentives to misreport aggregate price data are particularly
attractive in high-inflation economies, as governments may lower inflation statistics in an
attempt to reduce or anchor inflation expectations.15 The purpose of this model is to
understand the size of the inefficiencies created by this type of manipulation, and explain
some observed dynamics.

14Cisternas (2012) determines conditions under which a deterministic equilibrium will exist in environ-
ments that allow for endogenous human capital accumulation. In the particular case of exogenous skills,
it can be shown that the above effort profile is indeed an equilibrium through pointwise maximization.

15Evidence of this type of manipulation has been documented by Cavallo (2012) for the case of Ar-
gentina.
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Suppose that the aggregate price index of an economy is given by exp(Yt), t ≥ 0,
where Y := (Yt)t≥0 – the economy’s realized inflation – evolves according to

dYt = θtdt+ σξdZt, t ≥ 0,

with Z := (Zt)t≥0 a Brownian motion and θ := (θt)t≥0 an unobserved inflation component.
A first interpretation is that θ represents the component of inflation that is affected
by monetary policy, whereas Z captures shocks beyond the central bank’s control. A
second interpretation is that θ is the actual inflation rate of the economy, and Z captures
measurement errors (lags in data collection, how representative the basket of goods used
to construct the statistic is, etc.). In any case, in order to make good economic decisions
the population must have a good assessment of the future evolution of Y , which reduces
to having an accurate estimate of the current value of θ. I assume that θ is given by

dθt = −κ(θt − η)dt+ σθdZ
θ
t , t ≥ 0,

where η > 0 corresponds to the long-run average mean of unobserved inflation. In this
specification, θ fluctuates around η with high probability.

The government (long-run player) can manipulate the data Y gathered by the central
bank, before releasing it to the public. Suppose that the public signal about realized
inflation is given (ξt)t≥0, defined as dξt = dYt + atdt, where (at)t≥0 is the government’s
manipulation strategy. Thus, official inflation follows

dξt = (at + θt)dt+ σξdZt, t ≥ 0.

The government has preferences given by

E
[∫ ∞

0

e−rt
(
−(p∗t )

2 − ψ

2
a2
t

)
dt

]
,

where p∗ := (p∗t )t≥0 corresponds to the public belief about the unobserved inflation com-
ponent θ. Thus, the government would like to induce people to believe that the perceived
inflation trend p∗ is as close as possible to a target which has been normalized to zero:
having some degree of inflation is beneficial, as it signals economic growth, but high in-
flation is harmful for well-known reasons. More interestingly, since the target is below η,
the government’s goal is to drive perceived inflation below its natural rate of growth η.

Observe that in this specification manipulation is costly for the government even if the
population anticipate the government’s actions, and thus hold correct expectations about
the future evolution of prices. For instance, in economies in which variables are indexed
to inflation (e.g. wages, pensions, bonds or real estate) different degrees of manipulation
will incentivize agents to adjust prices periodically, thus incurring in menu costs. Or when
workers and firms decide on nominal salaries, official statistics can be used strategically
by the party with the largest bargaining power, thus increasing negotiation costs and
leading to ex-post inefficiencies. Similarly, investment can be severely affected if this lack
of commitment is expected to spread to regulatory agencies. Hence, the cost term ψ a2

2

represents the weight that the government attaches to introducing all these inefficiencies in
the economy.16 For simplicity, I assume that the size of this inefficiencies do not depend

16I exclude from the analysis information costs – a type of cost that naturally arises in this type of
environments – as information is public in this paper.
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on the actual level of realized inflation, but only on the magnitude of the size of the
manipulation.17

The methods presented in the previous section allow us to quantify the size of the
inefficiencies created by the government. For quadratic preferences (see Section 6), the
incentives equation has solution that is linear in p∗, so the degree of belief manipulation
is given by

a∗(p∗) =
1

ψ
V∆(p∗, 0) =

1

ψ
[α0 + α1p

∗],

with α1 < 0, and α0 ≤ 0 with equality if and only if κη = 0.18 Unlike the linear case,
actions are now stochastic and depend on the stochastic history of the game. Graphically:
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flow payoff, -p*
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(η)
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2

Publicη0

0
 α +

1
 α p*

Figure 1: The equilibrium manipulation choices as a function of perceived inflation p∗.

Cavallo (2012) compares official statistics of inflation in Argentina (ξ) versus a price
index that he constructs using online data from a large supermarket (a proxy for Y ) over
a period of four years. He shows that the gap between these two measures (captured
by a∗) is always negative (official inflation is always below his index) and its magnitude
fluctuates around two and three times the online statistic. This is consistent in which a
model in which unobserved inflation fluctuates around a mean η with high probability,
and this mean is larger than the government’s target. More interestingly, he documents
that manipulation of a similar magnitude and in the same direction also took place in
2009, year in which the country was going through a recession. Such behavior is in fact
predicted by the model: from the previous picture, a government will have the incentive
to reduce perceived inflation even when the latter is at, or sometimes below, its target.

17An extra term −(∆)2 capturing the efficiency costs of people having the wrong (off-equilibrium)
belief about inflation can be easily incorporated, but it delivers no additional economic insights.

18In Section 4 I derive sufficient conditions on the primitives of signal-jamming games with linear-
quadratic structure (linear learning, quadratic payoffs) that ensure the existence of a linear equilibrium.
This example satisfies those conditions.
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The reason why a government may have the incentive to further reduce a price in-
dex during a recession is due of cost smoothing. Observe that in the absence of both
actual and conjectured manipulation, perceived inflation p∗ mean reverts toward η > 0.
Consequently, low levels of inflation are likely to be short lived, and incentives for ma-
nipulation will be strong in the near future as perceived inflation goes back to η. But
local predictability of public beliefs (κ > 0) and convex costs of adjustment imply that
the government, in anticipation of future price manipulation, will have the incentive to
manipulate prices when the economy is in a downturn (p∗ ≤ 0), as doing so effectively
minimizes the total costs imposed on society. Once people recognize this possibility, they
will construct beliefs using a manipulation policy that allows for manipulation during
downturns (α0 < 0). In equilibrium, the government will become trapped into people’s
expectations of manipulation.

Finally, notice that manipulation is purely wasteful: in equilibrium the government
does not control the evolution of beliefs (they evolve exogenously) and yet it still intro-
duces inefficiencies. The government would like to commit to not manipulating prices,
but such commitment is not credible.

3.3 Monetary Policy and Unobserved Inflation

In the Online Appendix I extend the previous methods to study games of investment and
learning. In these games, the long-run player affects the evolution of the fundamental
itself, rather than the public signal that conveys information about it. Although these are
not exactly games of belief manipulation, the long-run player’s incentives can still benefit
from inducing belief asymmetry. In this section I study a simple model of monetary policy
in the presence of unobserved components of inflation, and show how the inflationary bias
induced by a central bank who lacks commitment depends on the characteristics of the
market’s learning process.

The price index of a two-sector economy takes the form exp(Y 1
t + Y 2

t ), t ≥ 0, where
Y i := (Y i

t )t≥0 i = 1, 2, evolve according to

dY 1
t = atdt+ σ1dZ

1
t

dY 2
t = θtdt+ σ2dZ

2
t , t ≥ 0. (27)

In this specification, at corresponds to the rate of money growth in the economy, and
θ := (θt)t≥0 is an unobserved inflation trend. The Brownian motions Zi := (Zi

t)t≥0,
i = 1, 2, represent sectorial shocks beyond the control of the central bank (the long-run
player), and are independent from each other. All the agents in the economy observe the
pair (Y 1, Y 2) and hence they can learn about θ from the observation of Y 2. I refer to θ
as the economy’s core inflation.19

Observe that in sector 1 prices are fully flexible and money has permanent effects on
the price level. In contrast, I assume that prices in sector 2 are partially rigid. More
specifically, I model θ as a mean-reverting process

dθt = (at − κθt)dt+ σθdZ
θ
t , t ≥ 0,

19Measures of core inflation typically exclude volatile goods such as food and energy. Consequently, I
am implicitly assuming that the volatility of shocks to prices in sector 1 is large relative to the volatility
of shocks in sector 2.
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reflecting the idea that any change in the stock of money is slowly internalized by core
inflation. The Brownian motion Zθ := (Zθ

t )t≥0 captures the policymaker’s limited ability
to control fundamental inflation. The volatility term σθ captures the degree of control
that the central bank has over core inflation.

The central bank cares about long-run price stability, and thus controls the evolution
of core inflation θ using money growth as an instrument. This comes at the expense of
permanent inflationary effects in sector 1, which also hurt the economy. Also, because
money growth is imperfectly observed, the policymaker can also exploit this informational
advantage to generate inflation surprises and thus reduce unemployment (Kydland and
Prescott (1977)).20 All these features are summarized in the central bank’s payoffs

E
[∫ ∞

0

e−rt
(
−k2(θt − θ)2dt− ψ

2
a2
tdt+ k1(dY 2

t − p∗tdt)
)]

.

The first term is the policymaker’s loss from core inflation having deviated away from a
target θ. The second term captures the loss from inducing non-zero inflation in sector 1
(whose corresponding target has been normalized to zero). Finally, the the third term is
a Phillips curve capturing the costs and benefit of inflation surprises: if realized inflation
in sector 2 is above market expectations, p∗t := E∗[θt|FY

2

t ], employment will increase.21

Suppose as a benchmark that θ is observable. Since in this case the central bank
cannot surprise the economy, the monetary authority’s problem becomes

max
a∈A

E
[∫ ∞

0

e−rt
(
−k2(θt − θ)2 − ψ

2
a2
t

)
dt

]
s.t. dθt = (at − κθt)dt+ σθdZ

θ
t .

This results in the following

Proposition 3.1. If core inflation is observed, the central bank’s optimal policy is of the
form ao(θ) =

αo1+2αo2θ

ψ
, where

αo1 =
−2k2θ

2αo2
ψ
− (r + κ)

> 0 and αo2 =
ψ

2

[
(r + 2κ)−

√
(r + 2κ)2 +

8k2

ψ

]
< 0.

Also, ao(θ) =
αo2κ

2αo2−rψ
> 0 if κ > 0. Consequently, the monetary policy rule is decreasing

in the level of core inflation (countercyclical).

Proof: See the Appendix.

�
20Imperfect monitoring of money growth has been assumed extensively in the literature. See for

example Cukierman and Meltzer (1986).
21For our purposes, defining a Philips that excludes sector 1 is without loss of generality. If we had

instead defined it as dξt − (a∗t + p∗t )dt, the central bank’s preferences would remain linear in ∆ (recall
that Et[dξt − (a∗t + p∗t )dt] = [at − a∗t + ∆t]dt). Consequently, such model would also have an equilibrium
in which the value attached to inducing belief asymmetry is constant across different levels of private
beliefs.
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If θ is hidden, but the central bank has commitment power, then p ≡ p∗. Since no
economic stimulus is possible, the central bank’s problem becomes

max
a∈A

E
[∫ ∞

0

e−rt
(
−k2(pt − θ)2 − ψ

2
a2
t

)
dt

]
s.t. dpt = (at − κpt)dt+ βσ2dZ

0

t ,

where Z
0

is a Brownian motion from the central bank’s perspective. Observe that this
problem has the same structure as the one just solved in Proposition 3.1, except for the
volatility term βσ2 6= σθ. Since the volatility term does not affect the form of the policy
rule found in Proposition 3.1, such rule is also optimal in this case.22

3.3.1 Optimal Policy: No Commitment

When the central bank lacks commitment, the relevant state variables correspond to
the policymaker’s private belief about core inflation p, and the belief-asymmetry process
∆ := p∗ − p. If learning is stationary, their dynamics are given by

dpt = (at − κpt)dt+ βσ2dZ
0

t

d∆t = [−(β + κ)∆t + (a∗t − at)]dt

with β := γ∗/σ2
2 =

√
κ2 + (σθ/σ2)2 − κ. Observe that when the long-run player affects

the evolution of the fundamental the effect of both a and a∗ on ∆ has the exact opposite
sign than the case in which he is affecting the evolution of the public signal instead. This
is because by a > a∗ leads him to be more optimistic about the current level of θ.

The central bank’s ex-ante flow payoffs take the form −k1∆t−k2(pt−θ)2− ψ
2
a2, t ≥ 0,

(up to an additive constant). Observe that from the central bank’s perspective, the gains
from reducing unemployment are linear in ∆. Consequently, we would expect to find an
equilibrium in which the inflationary bias – the gap between the full commitment rule
and the time-consistent one under no commitment – is uniform across all levels of public
beliefs. This is confirmed in the next proposition:

Theorem 3.2. When θ is unobserved, the central bank’s optimal policy takes the form
α∗(p) =

αo1+2αo2p

ψ
+

α∗3
ψ

with αo1 and αo2 as in the observable case, and

α∗3 =
k1

r +
√
κ2 + (σθ/σ2)2 − 2αo2

ψ

> 0.

Proof: See the Appendix.

�

The size of the shift is given by the term

−V∆(p, 0) = α∗3 = − k1

r + β + κ− 2αo2
ψ

=
k1

r +
√
κ2 + (σθ/σ2)2 − 2αo2

ψ

> 0,

22Because the payoff function is quadratic, the volatility term only affects the level of the central
bank’s value function.
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which is increasing in k1 and decreasing in r, ψ, κ and σθ/σ2. In particular, the incentives
of the central bank to surprise the economy with inflation are high when the impact
on employment is prolonged. The latter effect is captured by the rate at which belief
asymmetry decays over time, β + κ =

√
κ2 + (σθ/σ2)2. The higher this rate, the shorter

the effect on employment. When monetary policy has loose control (σθ large), or prices Y2

are very informative (low σ2), or prices in sector 2 assimilate money growth faster (high
κ), people will discount past information more heavily (beliefs will have lower persistence),
and this will generate more commitment.

Full commitment

No commitment

θ
-0 -

   

   

                                             
   

      

Size of the shift increases with k  and

decreases with σ /σ
1

θ

Money
growth

k  (p* - θ)
_

2

2

Public 
beliefsp*

ξ

Figure 2: Non-commitment rule and the inflationary bias.

In Cukierman and Meltzer (1986) a central bank has private information about its
(exogenous) current preference for stimulating the economy over controlling inflation, and
prices are a noisy signal of the central bank’s current target of money growth (imperfect
control). The central bank thus chooses a rate of money growth based on its private
information, taking into account that the economy learns about its preferences through
the observation of realized prices. An important message in that paper the lower the
degree of control over its objective that the central bank has, the higher the incentives
to surprise the economy with high inflation. In contrast, the current example shows that
having low control over an unobserved component of inflation (as measured by high levels
of σθ), induce a policymaker to exhibit more commitment. The example presented in
this section thus highlights the importance of understanding the nature of the shocks
that limit a central bank’s ability to achieve its goals, as loose control over unobserved
variables, as opposed to observed ones, generate opposite incentives.

3.4 Nonlinear Learning: Work-Shirk Equilibria

One of the most relevant features of the incentives equation is that it can shed lights on the
shape of equilibrium behavior without the need to fully solve the complex partial differen-
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tial equations that characterize the long-run player’s value function. This is particularly
important in environments that exhibit high nonlinearities, as I illustrate below.

Suppose that the long-run player is a worker whose ability θ is drawn from a dis-
crete random variable taking values in {0, 1}. The worker dislikes effort according to the
function g(a) = a2

2
, and the flow payoff from the market’s actions is given by u(p∗, a∗(p∗)).

Let p∗t := P∗(θt = 1|F ξt ) denote the public belief that the worker’s ability is high given
the information up to time t, and pt the corresponding private belief, t ≥ 0. In this case
it can be easily checked that p∗ = p∆

1+p(∆−1)
, with (p,∆) evolving as

dpt =
pt(1− pt)

σξ
dZY

t and d∆t =
∆t(at − a∗t )

σ2
ξ

dt, t ≥ 0, (28)

and ∆ ≡ 1 capturing the region in which beliefs are aligned. Moreover, the incentives
equation takes the form[

r +
V∆p(p, 0)

σ4
ξ

]
V∆(p, 0) = p(1− p)

[
h′(p) +

V∆p(p, 0)

σ2
ξ

+
p(1− p)

2σ2
ξ

V∆pp(p, 0)

]
, (29)

where p(1− p)h′(p) =
[
up + ua

da∗

dp

]
p∗=p

= up(p, V∆(p, 0)) + ua(p, V∆(p, 0))V∆p(p, 0).

Using results from ordinary differential equations, it can be shown that there exists a
non-negative solution of class C2 to the boundary value problem defined by the above ODE
and the boundary conditions V∆(0, 0) = V∆(1, 0) = 0.23 One would expect equilibrium
effort to vanish as public beliefs tend to 0 or 1. This is because public beliefs become
unresponsive to new information asymptotically in those limits. Provided a non-negative
MPE that vanishes at the extreme exists, then it should look like the figures below:
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0.2 0.4 0.6 0.8 1.0
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Figure 3: Left panel: u(p∗, a∗) = p∗. Right panel: u(p∗, a∗) = a∗ + p∗. Parameter values:
σξ = 1.

In the left panel, the worker is payed according to the perceived value of his skills only,
i.e. u(p∗, a∗) = p∗. In this case, the myopic gain from belief distortion is given by

d

d∆
u

(
p∆

1 + p(∆− 1)

) ∣∣∣∣∣
∆=1

=
d

d∆

[
p∆

1 + p(∆− 1)

] ∣∣∣∣∣
∆=1

= p(1− p), p ∈ (0, 1).

23The proof of this result is available in the online Appendix.
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Moreover, the learning dynamics are also symmetric around p = 1/2. Yet, incentives may
not exhibit that property. This is because the worker’s actions also affect the market’s
expectation of equilibrium play, and this ratcheting effect is not uniform across different
levels of reputation.24 For low reputations, inducing a marginal unit of belief asymmetry
increases the threshold of belief manipulation that the worker will face in the near future.
But since his reputation is low already, and such additional effort is not compensated, the
monetary loss from being perceived as less skilled is small, which results in low effort. As
reputation increases wages goes up, making it too costly for the worker to shirk and thus
risking to start re-building his reputation again, as he is not compensated by this effort.

In the right panel the worker is also rewarded by effort. Now, the (on-path) myopic
gain from belief distortion ceases to be symmetric around p = 1/2 and it is given by

p(1− p)[1 + V∆p(p, 0)], p ∈ (0, 1).

Observe that in this case incentives will be stronger for low reputations. This is because
the market compensates any additional unit of effort, offsetting the negative effect of
facing a tougher standard. Hence, rewarding effort generates incentives for building a
reputation. On the other hand a worker with a high reputation can afford to shirk, as
the costs associated with building a reputation are partially covered by the compensation
that he receives.

4 Sufficiency: Verification Theorems

The incentives equation, as a local incentive constraint, does not ensure that the long-run
player does not benefit from inducing a large degree of belief discrepancy. In order to
verify incentive compatibility globally we have to estimate the long-run player’s payoff for
deviations of any size. This section presents “verification” theorems (verifiable sufficient
conditions) that ensure that a solution to the incentives equation is in fact a MPE.

Before stating the theorems I introduce the following concepts:

Definition 4.1. • A function f : R → R is said to satisfy a linear (respectively,
quadratic) growth condition, if there exists a constant C > 0 such that |f(x)| ≤
C(1 + |x|) (respectively, |f(x)| ≤ C(1 + |x|2)).

• A differentiable function g : Dom(g)→ R is strongly convex if there exists a constant
ψ > 0 such that g(y)− g(x)− g′(x)(y − x) ≥ ψ

2
(x− y)2 for all x, y ∈ Dom(g). If g

is twice differentiable, strong convexity is equivalent to the existence of ψ > 0 such
that g′′(x) ≥ ψ > 0 for all x ∈ Dom(g).

4.1 Verification Theorem I: General Case

Proposition 2.7 is important because it offers a way for showing the existence of MPE. In
fact, if V solves the PDE (23)-(24), then it satisfies the HJB equation (20) with

a∗(·) := arg max
a∈A
{aβV∆(·, 0)− g(a)}

24From the incentives equation (29) it can be seen that the term V∆p(p, 0)V∆(p, 0) makes the ODE
non symmetric around p = 1/2.
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taken as given in the dynamics of ∆. Hence, classic verification theorems from dynamic
programming apply. Furthermore, since V satisfies the equilibrium condition (24), the
corresponding policy evaluated at ∆ = 0 is, by construction, a MPE.

Theorem 4.2. (Verification Theorem I). Suppose that V ∈ C2,1(R2) is a solution to
the PDE (23)-(24) satisfying a quadratic growth condition. Let a∗t = arg max

a∈A
{aβV∆(pt +

∆t, 0))− g(a)}, t ≥ 0, and suppose that V satisfies

lim sup
t→∞

E[e−rtV (pt, ∆̂
∗
t )] ≥ 0, ∀ feasible strategies â

where ∆̂∗t denotes the belief asymmetry process under the pair (â, a∗). Then, V is an upper
bound to the long-run player’s value function when the small players construct beliefs using
a∗. Furthermore, if under the pair (α, a∗) := (g′−1(βV∆(p,∆)), g′−1(βV∆(p + ∆, 0))) the
ODE (17) has a unique solution ∆α,∗ that satisfies

lim inf
t→∞

E[e−rtV (pt,∆
α,∗
t )] ≤ 0,

and the process αt := g′−1(βV∆(pt,∆
α∗
t ) is feasible, then V is the long-run player’s value

function. Thus, a∗ is a MPE. Moreover, if a∗ is differentiable and interior, then it satisfies
the incentives equation.

Proof : Since the PDE (23)-(24) is a standard HJB equation subject to an additional
fixed point condition, the result follows directly from standard verification theorems in
dynamic programming. See for instance Pham (2009).

�

Besides delivering an explicit expression for a MPE, Theorem 4.2 provides additional
insights on the way in which incentives are structured in this class of games. In fact, in
Section 6 I apply the previous theorem to a class of linear-quadratic games for which the
associated PDE admits an analytic solution. In this case, it is possible to characterize the
dynamics of belief asymmetry off the equilibrium path, and thus to understand how the
long-run player can exploit his private information after a suboptimal actions have been
undertaken.

Remark 4.3. There are very few classes of PDEs that admit analytic solutions. Fur-
thermore, (23)-(24) imposes additional difficulties, as numerical methods would require
calculating the value function and its derivative simultaneously at two different points,
for all points in the domain. This paper offers a localizing method to the numerical ap-
proximation of markovian equilibria. More specifically, any solution q(p) of the incentives
equation can be used to construct a valid guess of a∗, which in turn plugged into the
dynamics of belief asymmetry. The resulting PDE is therefore local and thus standard
numerical methods apply. The resulting solution can then be compared against the initial
guess along the equilibrium path. This numerical approach is a feasible way for evaluating
the plausibility of existence of equilibria in highly nonlinear environments.
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4.2 Verification Theorem II: Gaussian Learning

When learning is Gaussian it is possible to exploit the linearity of the learning process in
order to establish sufficient conditions for the existence of MPE without fully solving the
previous PDE. More specifically, when a MPE exists and it exhibits enough differentia-
bility, the long-run player’s payoff on the equilibrium path V (·, 0), and the derivative of
the value function with respect to the stock of belief asymmetry V∆(·, 0), solve the ODEs

rU(p) = u(p, q(p))− g(g′−1(βq(p))) + U ′(p)µ(p) +
1

2
σ2U ′′(p) (30)

r̃(p, q(p))q(p) = up(p, g
′−1(βq(p))) + ua(p, g

′−1(βq(p)))
d

dp
g′−1(βq(p))

+q′(p)µ(p) +
1

2
σ2q′′(p), p ∈ R, (31)

provided incentives are interior. Theorem 4.4 below states conditions on any solution
(U, q) to the previous system that ensure that p 7→ a∗(p) := g′−1(βq(p)) is in fact a MPE.

Intuitively, the long-run player will engage in large deviations whenever he can exploit
the advantage of having access to private information about the fundamentals. Condition
(iii) in the Theorem establishes a uniform bound on the long-run players information rent
that ensures that “double deviations” are never profitable.

Theorem 4.4. (Verification Theorem II). Suppose that learning is linear and that the
manipulation cost function g : R → R is strongly convex. Let U ∈ C2(R) and q ∈ C2(R)
denote a solution to the system (30)-(31) with the following properties:

(i) U satisfies a quadratic growth condition; U ′ and q satisfy a linear growth condition,

(ii) For any feasible strategy â, lim
t→∞

E[e−rtU(pt + ∆̂q
t )] = lim

t→∞
E[e−rtq(pt + ∆̂q

t )∆̂
q
t ] =

lim
t→∞

E[e−rtU ′(pt + ∆̂q
t )∆̂

q
t ] = 0, where dpt = −κ(pt− η)dt+ σdZt, and ∆̂q := (∆̂q

t )t≥0

denotes the belief asymmetry process under (â, g′−1(βq(·))),25

(iii) U ′′ and q′ satisfy

|q′(p)− U ′′(p)| ≤ ψ(r + 4β + 2κ)

4β2
, for all p ∈ R. (32)

Then the process a∗t := g′−1(βq(pt)), t ≥ 0 corresponds to a MPE.

Proof : See the Appendix.

�

The growth and transversality conditions on U ensure that there exists a unique solu-
tion to (30) which corresponds to the long-run player’s utility if he follows a∗, whereas the
growth conditions on U ′ and q are purely technical. Strong convexity, the transversality

25This condition can be weakend to lim sup
t→∞

E[e−rt[U(p̂qt ) + [q(p̂qt )− U ′(p̂
q
t )]∆̂

q
t ] ≥ 0.
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conditions on U ′ and q, and condition (iii) allow me to find an upper bound to the long-
run player’s payoff (under all feasible strategies) that coincides with U on the equilibrium
path. Hence, it is never optimal for him to deviate from a∗ when beliefs are aligned.

Condition (iii) is economically meaningful. It is easy to see that U ′(p) − q(p) is the
derivative of long-run player’s payoff with respect to his private type on the equilibrium
path, keeping the level of public beliefs fixed at p∗ = p. Analogously, q(p) − U ′(p) is
the corresponding directional derivative in the opposite direction. Hence, |U ′′(p)− q′(p)|
measures the value for the long-run player of becoming privately informed about his type.
If this information rent (in either direction) is large enough, the long-run player may find
it optimal to deviate off the equilibrium path.

Similar bounds have been found in the literature of optimal contracting in settings
where the asymmetric information present in the environment has high persistence. Both
Williams (2011), in a context of persistent private information, and more recently San-
nikov (2014), in a setting where actions have long-term impact on performance, derive
similar bounds that make their optimal contracts fully incentive compatible. Since their
conditions are bounds on the volatility of a “marginal utility” process, these are effec-
tively bounds on the second derivative of the agent’s value function (under the optimal
contract), as it is the case in the class of games analyzed here. The bounds found here are
nonetheless two-sided as the long-run player can benefit from under or over manipulating
the public signal, whereas their bounds are instead one-sided, as deviations only in one
direction matter for sufficiency.26

5 Uniformly Bounded Marginal Flow Payoffs

In this Section I apply Theorem 4.4 to show the existence of equilibria in environments
where the marginal impact of public beliefs on the long-run player’s payoff is uniformly
bounded across all levels of public beliefs. For simplicity I restrict attention to commit-
ment models : environments in which the small players’ action is of the form bt := b(p∗t )
(i.e. independent of a∗).27 In these settings, when a MPE exists, the long-run player
exerts costly effort in equilibrium, yet he cannot affect his flow playoff (as p∗ = p evolves
exogenously on the equilibrium path). Hence, the long-run player would like to commit to
not to manipulate the public signal, but such announcement is not incentive compatible.

Recall that when learning is Gaussian the key state variables take the form

dpt = −κ(pt − η)dt+ σdZY
t

d∆t = [−(β + κ)∆t + β(at − a∗t )]dt

where σ = βσξ and β = β(κ) := γ∗

σ2
ξ

=
√
κ2 + σ2

θ/σ
2
ξ−κ is the sensitivity of public beliefs to

new information. Moreover, from Section 3.1 we know that when h(p) = αp, some α ∈ R,
the model becomes fully linear, so the incentives equation admits a constant solution
q(p) ≡ α

r+β(κ)+κ
. Consequently, whenever marginal payoffs become asymptotically linear,

we can exploit the simplicity of the linear case to pin down natural asymptotic conditions
that incentives equation must satisfy.

26In particular, Williams (2011) allows for only downward deviations in his report-dependent contract.
27Most of the results carry over to the case in which a∗ also affects the long-run player’s payoff, as

long as the boundedness conditions on derivatives are extended appropriately.
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The following assumptions are imposed in this section:

Assumption 5.1. (i) Learning is Gaussian.

(ii) Let h(p) := u(b(p)). Then m := inf
p∈R

h′(p) > −∞ and M := sup
p∈R

h′(p) <∞.

(iii) Both lim
p→∞

h′(p) and lim
p→−∞

h′(p) exist.

(iv) g : A → R is twice differentiable and strongly convex, and g−1(J) ⊂ A, where
J := [m/(r + β(κ) + κ),M/(r + β(κ) + κ)].

One of the remarkable advantages of continuous-time stochastic control is its natural
connection with partial and ordinary differential equations. Assumption (ii) allows us
to apply classic results on the existence of bounded solutions to ODEs over unbounded
domains to the system of ordinary differential equations (30)-(31). Condition (iii) states
that flow payoffs become asymptotically linear, suggesting that the solution to the incen-
tives equation must look like its corresponding analog in the linear case. Condition (iv)
ensures that A is large enough so that incentives are always interior.

Theorem 5.2. (Existence of Bounded Solutions to the Incentives Equation).
Suppose that Assumption 5.1 holds. Then, there exists a solution q ∈ C2(R) to the incen-
tives equation such that

q(p) ∈
[

m

r + β(κ) + κ
,

M

r + β(κ) + κ

]
, for all p ∈ R, (33)

Moreover, any solution satisfying (33) also verifies that

lim
p→−∞

q(p) =
lim

p→−∞
h′(p)

r + β(κ) + κ
and lim

p→∞
q(p) =

lim
p→∞

h′(p)

r + β(κ) + κ
. (34)

When κ > 0, any solution satisfying (33) and (34) also has a uniformly bounded derivative.
When κ = 0 there exists a C2 solution that, in addition to satisfying (33) and (34), it also
has a uniformly bounded derivative.

Proof: See the Appendix.

�

Any solution satisfying (33)-(34) and that also has a uniformly bounded derivative
will be referred to as a bounded solution of the incentives equation.

Having information about the derivative of a solution to the incentives equation is
useful for three reasons. First, a uniform bound on q′ guarantees that, given any feasible
strategy, there will exist a unique strong solution for the dynamic of p∗ (eqn. (16)) and
consequently, for the dynamic of ∆. Thus, the long-run player’s optimization problem
is well-posed. Second, Theorem 4.4 imposes growth and transversality conditions on U ′,
which will in turn depend on q′. Third, when the bounds on q′ can be derived explicitly
(as in Section 5.1 for the case κ = 0 and quadratic cost of effort), such conditions can be
verified ex-post on any numerical solution of an “approximate” incentives equation that
is defined over a bounded domain.
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The next result deals with the existence and uniqueness of a solution to the ODE (30).
It states that the unique solution to it is in fact the payoff that the long-run player would
obtain if the small players construct beliefs using a bounded solution to the incentives
equation, and he does not deviate off the equilibrium path.

Proposition 5.3. (The Long-Run Player’s Equilibrium Payoff as a Solution to
an ODE.) Suppose that Assumption 5.1 holds and let q denote a bounded solution of the
incentives equation. Then, there exists a unique U ∈ C2(R) solution to the ODE (30).
This solution is given by

U(p) = E
[∫ ∞

0

e−rt[h(pt)− g((g′)−1(βq(pt)))]dt

]
(35)

where dpt = −κ(pt − η)dt+ σdZt for t > 0 and p0 = p. Furthermore, U satisfies a linear
growth and U ′ is uniformly bounded.

Proof: See the Appendix.

�

Finally, I establish conditions on the primitives (r,m,M,ψ, κ, σθ, σξ) that ensure that
a solution (U, q) to (30)-(31) satisfies the conditions of Theorem 4.4:

Theorem 5.4. (Existence of MPE) Suppose that Assumption 5.1 holds and that κ = 0.
Let q : R→ R denote any bounded solution to the incentives equation. Then, the long-run
player’s information rent takes the form

U ′′(p)− q′(p) = −E
[∫ ∞

0

e−rsβq(ps)ds

]
, with dpt = σdZt, p0 = p. (36)

Moreover, if

M −m
ψ

≤

√
2rσ2

ξ (r + β)2

4β2
=

√
2rσ2

ξ (rσξ + σθ)
2

4σ2
θ

, (37)

the process (g′−1(βq(pt)))t≥0 is a MPE.

Proof: See the Appendix.

�

Equation (36) expresses the long-run player’s information rent as a expected dis-
counted payoff of (equilibrium) marginal utilities with respect to belief asymmetry. Intu-
itively, since beliefs have persistence, acquiring private information will affect all future
continuation values.28 In the specific case of beliefs evolving as a Brownian martingale
(κ = 0), a change of any size in the initial level of private beliefs will affect all future
beliefs by the same amount, so the continuation value at time s changes by q(ps), s > 0.

Condition (37) is found by obtaining a bound for (36), and imposing that (iii) in
Theorem 4.4 holds. Condition (37) is relaxed when manipulation becomes more costly

28Similar expressions have been derived by Sannikov (2014) in a contracting environment.
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(ψ increases) and when 1/σξ and σθ decrease: in the latter two cases, beliefs respond
less strongly to new information, reducing the benefits of belief manipulation.29 Notice
that while the condition is violated for M > m and r = 0, it is always possible to find
parameters (σθ, σξ, ψ) under which the condition holds in the r > 0 case. Finally, the
condition is relaxed when M −m decays, and trivially satisfied when payoffs are linear
(M = m), as private information ceases to have any value in this case (Section 3.1).

To conclude, observe that the case κ = 0 corresponds to the environment that offers
the largest returns from belief manipulation. In fact, since β(κ) is decreasing in κ and

β(κ) + κ =
√
κ+ σ2

θ/σ
2
ξ increases in κ, public beliefs become (i) less responsive to new

information and they (ii) decay more rapidly over time, as κ increases. Hence, Markovian
equilibria are also expected to arise in the mean reverting case.

6 Unbounded Marginal Flow Payoffs: The Linear-

Quadratic Case

This section introduces a subclass of linear-quadratic games for which on- and off-path
incentives can be fully characterized via the verification theorem 4.2. These games have a
linear-quadratic structure because learning is Gaussian (linear) and the long-run player’s
flow utility is a quadratic loss function of public beliefs and the cost of manipulation.

I show below that, when a condition on the curvature on the long-run player’s flow
payoff holds, the PDE (23)-(24) that summarizes global behavior (Proposition 2.7) admits
an analytic solution. In this case, a the MPE found is linear in the public belief, yet
exhibits all the forces present in the incentives equation. Interestingly, this curvature
condition is also necessary for the existence of a linear MPE: when this condition is
violated, the small players cannot discipline the long-run player using a linear conjecture
of signal manipulation.

6.1 Linear-Quadratic Games: Existence Result

Definition 6.1. A signal-jamming game is said to be of linear-quadratic form if

(i) Fundamentals θ are a mean reverting process: dθt = −κ(θt − η)dt+ σθdZ
θ
t , t ≥ 0;

(ii) A = R and g(a) = ψ
2
a2, ψ > 0;

(iii) h(p∗) := u(b(p∗, a∗)) = u0 + u1p
∗ − u2p

∗2
t , where u0, u1 ∈ R and u2 ≥ 0.30

The next result shows the existence of a linear (in beliefs) equilibrium which exhibits
all the forces mentioned in the previous sections.

29Observe that belief distortions become more persistence as β(0) := σθ/σξ decrease, which provides
more incentives for belief manipulation. However, the sensitivity effect is stronger. This was also found

in the linear case, where incentives are proportional to β(0)
r+β(0) .

30The analysis can be easily extended to the case in which the market’s action is also linear in a∗:
u(b(p∗, a∗)) = u0 + u1(k1p

∗ + k2a
∗)− u2(k1p

∗
t + k2a

∗
t )

2, k1, k2 ∈ R.
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Theorem 6.2. Suppose that a linear-quadratic game of signal manipulation is such that

u2 ≤
ψ(r + β(κ) + 2κ)2

8β2(κ)
. (38)

Then a linear MPE exists. In this equilibrium, the long-run player’s value function is
given by V (p,∆) = α0 + α1p+ α2∆ + α3p∆ + α4p

2 + α5∆2, and the equilibrium degree of
manipulation by a∗(p∗) = β

ψ
V∆(p, 0) = β

ψ
[α2 + α3p

∗], where α0, α1 ∈ R, α4, α5 < 0, and

α2 =
ηκα3 + u1

r + β(κ) + κ+ β2(κ)α3

ψ

, and (39)

α3 =
ψ

2β2(κ)

[
−(r + β(κ) + 2κ) +

√
(r + β(κ) + 2κ)2 − 8u2β2(κ)

ψ

]
< 0. (40)

Off the equilibrium path, ∆t = ∆0e
ρt, t ≥ 0, with ρ < 0, so any stock of belief asymmetry

vanishes asymptotically.

Proof: See the Appendix.

�

The long-run player’s on-path utility takes the form V (p, 0) = α0 + α1p + α4p
2, (see

the Appendix for the explicit expressions), and the equilibrium manipulation strategy is
a decreasing function of public beliefs (α3 < 0). This is intuitive as the long-run player
has the incentive to push public beliefs toward the bliss point u1

2u2
.

The incentives generated within the class of linear-quadratic games, although linear,
satisfy all the forces identified in the incentives equations. First, the size of the marginal
flow payoffs drive the size of the long-run player’s incentives: as the myopic gain from
belief manipulation decays, equilibrium effort decreases. Second, the long-run player
conditions his actions to the anticipated economic conditions: if for instance u1 = 0 and
η < 0, then α2 > 0,31 which means that the long-run player indeed manipulates the signal
at the bliss point of his preferences. This is because he anticipates that fundamentals
will mean revert to η with high probability, region in which it is optimal to exert signal
manipulation. But since the cost of signal manipulation is convex, it is optimal to invest in
signal manipulation today. Finally, the rate at which a marginal unit of belief asymmetry
depreciates over time is endogenous. This is because

r̃(p) := r + φ∆(p, 0) +
β2

ψ
V∆p(p, 0) = r + β + κ+ β2α3

with α3 < 0. Hence, when a MPE in linear strategies exists, the ratcheting forces en-
courage manipulation (as the standard of manipulation decays in the direction of manip-
ulation) and also uniform across all the state space. All these effects can be seen in the
following figure:

31Comes from the fact that α3 < 0 and r + β + κ+ β2α3

ψ > 0.

32



η

α
2/-α

3

α
2

p*, beliefs

flow payoff

On-path incentives

Long-run player's

Cost

smoothing
p+Δp

a*(p)

a*(p+Δ)

a*(p)-a*(p+Δ)=- α  Δ
3

Figure 4: Two determinants of the size of incentives: cost smoothing and the effect that
distorting the market’s conjecture has on rate at which ∆ depreciates.

The relevant parameters of the linear-quadratic model correspond to the rate of mean
reversion κ, the long-run mean of fundamentals η, and the convexity parameter ψ of the
effort disutility function. The sensitivity of equilibrium incentives to these parameters
can be seen in the following figures:
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Figure 5: Sensitivity of equilibrium incentives to ψ, η and κ, respectively.

In the left panel, given any fixed volatility (slope) of the long-run player’s strategy,
more convex manipulation cost reduce his utility. Hence, the equilibrium strategy be-
comes less steep as ψ increases. In the middle panel, The middle panel, as the distance
between the long-run player’s consumption bliss point and the long-run average value of
fundamentals (η) increases, the speed at which fundamentals will move away from the
bliss point will go up, thus inducing more signal manipulation due to cost smoothing.
Finally, changes in κ (third panel) can have two effects on incentives. First, as the rate of
mean reversion increases there is a pressure towards more cost smoothing (numerator in
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α2). However, an increase in κ makes public beliefs less persistent and also less responsive
to new information.

6.2 The Curvature Condition

Theorem 6.2 ensures the existence of a linear MPE provided the curvature condition
(38) holds. In this section I show that the curvature condition is also necessary for the
existence of such a linear equilibria.

In order to understand the intuition behind this result, observe that as the curvature of
the payoff function u2 becomes larger, the myopic benefit from inducing belief asymmetry
increases. Consequently, in order to make deviations more costly, the small players have
to impose a tougher manipulation standard on the long-run player. One way in which
this can be done is through imposing a steeper conjecture a∗. However, steeper conjecture
generate a second effect: the return from inducing belief asymmetry increases. In fact, in
any MPE a∗, the rate of return on belief asymmetry

r̃(p) = r + β + κ+
β2

ψ

da∗

dp∗
(p∗), p∗ ∈ R,

decays as a∗ becomes more negatively sloped. Intuitively, by pushing public beliefs toward
zero, the long-run player will face an even lower manipulation standard tomorrow, which
increases the benefits from manipulating the belief of the small players. I show next

that for any u2 > ψ(r+β+2κ)2

8β2 , a linear conjecture cannot control simultaneously both

the immediate benefits from a deviation (measured by the size of marginal flow payoffs)
and the long-term benefits from engaging in large deviations off the equilibrium path
(measured by r̃).

Formally, suppose that the small players conjecture that â(p∗) = βα̂3

ψ
p∗ = βα̂3

ψ
(p+ ∆),

α̂3 < 0, will arise in equilibrium.32 Consider the deterministic control problem P(α̂3)

max
a∈A

∫ ∞
0

e−rt
(
−u2(pt + ∆t)

2 − ψ

2
a2
t

)
dt

s.t. dpt = −κptdt, (41)

d∆t =

[
−
(
β + κ+

β2

ψ
α̂3

)
∆t + βat −

β2

ψ
α̂3pt

]
dt, (42)

where u2, κ, β, ψ > 0. This problem corresponds to a deterministic version of the linear-
quadratic game previously studied in the case in which u1, η and the volatility term in
the private beliefs process are all zero (β, however, depends on σξ > 0, in the same way
it does in the stochastic game). Studying this problem is without loss of generality when
the goal is to find the long-run player’s best response in the original stochastic game.33

32It is straightforward to argue that there is no equilibrium in which on-path effort is given by α̂3p
∗,

p∗ ∈ R with α̂3 > 0.
33This is true because of two reasons. First, u1 and η do not affect the slope of the long-run player’s best

response, which is what at the end of the day matters for the existence of a linear equilibrium. Second,
since the original problem has a linear-quadratic structure, any second order term will only affect the
level (or constant term) of the long-run player’s value function. Thus, when a linear best-response to â
exists in the original stochastic problem, this one can be found through solving this deterministic version
(this is called the certainty equivalence principle).
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The next results show that the previous problem always admits a linear best response.
Furthermore, it shows that when the curvature condition is violated, the long-run player
responds more aggressively to â. This is intuitive, as the long-run player gains from
manipulating the signal toward his preference bliss point.

Proposition 6.3. The value function associated with P(α̂3), α̂3 < 0, has the form
V (p,∆) = α3p∆ + α4p

2 + α5∆2, where α3, α4 and α5 depending on α̂3. Moreover, if

u2 > ψ(r+β+2κ)2

8β2 , then α3(α̂3) < α̂3. Consequently, starting from a common prior, the
long-run agent finds it optimal to engage in belief manipulation at time zero.

Proof: See the Appendix.

�

When the curvature condition is violated, the PDE (23)-(24) does not admit a quadratic
function as a solution, and hence a linear MPE ceases to exist. However, this does not
mean that there are no equilibria in pure strategies. A MPE may exists provided the
incentives equation (25) admits another solution that is nonlinear, and provided the in-
formation rent that the long-run player acquires after a deviation is not too large.

7 Conclusions

In this paper I developed a class of continuous-time games for studying strategic behavior
in environments where agents learn about the relevant economic environment. Necessary
and sufficient conditions for the existence of Markov Perfect Equilibria that are captured
in a powerful nonlinear ODE are obtained. Most importantly, the methods and results
presented in this paper are general enough to be applied in a wide set of environments,
ranging from the determinants of workers’ incentives in labor markets, to central banks’
behavior in response to unobserved states of the economy.

The choice of casting the model in continuous-time is driven by its well-known ad-
vantages over traditional ones. Continuous-time methods are useful because they offer
clarity, tractability and computational power. In particular, exploiting the connection
between stochastic control and the theory of differential equations allowed me to charac-
terize equilibria for environments well beyond the linear frameworks previously studied.
The use of martingale methods allowed me to find intuitive sufficient conditions for the
existence of equilibria. More fundamental is the fact that the continuous-time approach
typically offers particularly clean insights.

The results in this paper rely on the manipulation technology having an additively-
separable structure. Allowing for complementarities between actions and fundamentals
creates another channel for incentives: experimentation. By studying models with an
additively-separable structure, I am able to eliminate the experimentation effect and con-
centrate only on belief manipulation motives. The model is thus not appropriate for
studying incentives in environments where affecting the speed of learning of others plays
a predominant role. However, the envelope methods used to characterize incentives have
a direct analog in such non-separable settings.

Finally, the characterizations obtained in this paper depend on the assumption of
ex-ante symmetric uncertainty about the underlying fundamental. While it is widely un-
derstood that people make economic decisions under incomplete information about the
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environment, most of the economic research has dealt with the case of adverse selection
only. Learning about the environment occurs everywhere, and hence it deserves more at-
tention. This paper has offered a framework for understanding incentives in settings where
agents have approximately the degree of uncertainty about the economic environment at
the outset.
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8 Appendix A: Proofs of Sections 2 and 3

Proof of Proposition 2.4: Case (L) (and the public belief dynamics (13)-(14) for the
Gaussian case) is a direct consequence of Theorem 12.1 in Liptser and Shiryaev (1977).
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For case (NL), Theorem 9.1 in Liptser and Shiryaev (1977) shows that πt := P(θt = h|FYt ),
t ≥ 0, evolves according to

dπt = (λ1(1− πt)− λ0πt)dt+
δπt(1− πt)

σξ

(
dYt − πtdt

σξ

)
,

where δ := h − `, and ZY
t := 1

σξ

(
Yt −

∫ t
0
πsds

)
is a FY−Brownian motion from the

long-run player’s standpoint.
Starting from any point in (0, 1), π never hits zero or one (Karlin and Taylor (1981)).

Thus, applying Ito’s rule to pt := log (πt/(1− πt)) we get

dpt =

(
λ1

πt
− λ0

1− πt
− δ2(1− 2πt)

2σ2
ξ

)
dt+

δ

σξ
dZY

t .

Since πt = ept

1+ept
, the dynamics of (43) as a function of p is given by

dpt =

[
λ1
ept + 1

ept
− λ0(1 + ept)− δ2

2σ2
ξ

(1− 2
ept

1 + ept
)

]
dt+

δ

σ2
ξ

(
dYt −

ept

1 + ept
dt

)
, t ≥ 0.

Finally, the dynamic of the small players’ belief (13)-(14) in the nonlinear case are
obtained using the same Theorem, using signal ξ and the innovation process Z∗t :=
1
σξ

(
ξt −

∫ t
0
(a∗s + π∗s)ds

)
, t ≥ 0. This concludes the proof.

�

Proof of Proposition 3.1: It is easy to see that V (θ) = αo0 +αo1θ+αo2θ
2 solves the HJB

equation

rV (θ) = max
a∈R

{
−k2(θ − θ)2 − ψ

2
a2 + [a− κθ]Vθ(θ) +

1

2
σ2
θVθθ(θ)

}
when αo0 = −k2θ

2
+
αo1
2ψ

+α2σ
2
θ , α

o
1 = − 2k2θ

2αo2
ψ
−(r+κ)

and αo2 = ψ
2

[
(r + 2κ)−

√
(r + 2κ)2 + 8k2

ψ

]
.

In order to show that V is indeed the policymaker’s value function and that ao(θ) =
1
ψ
Vθ(θ) an optimal policy, two things remain to be checked:

1. Any feasible policy â such that E
[∫∞

0
e−rt

∣∣∣− k2(θât − θ)2 − ψ
2
â2
t

∣∣∣dt] <∞, must also

satisfy lim sup
t→∞

e−rtE[V (θât )] ≥ 0, where θâ is the dynamic of θ under the policy â.

2. Second, that along the conjectured optimal strategy ao, lim inf
t→∞

e−rtE[V (θa
o

t )] ≤ 0.

As it is well known, condition 1 (along with the fact that V solves the HJB equation)
implies that V is an upper bound to the policymaker’s utility. Part 2. yields that V is
attainable under the Markov control ao. Conditions 1. and 2. are shown to be true in the
non-commitment case, which corresponds to a slightly more general environment than
the one analyzed here. We refer the reader to the proof of Theorem 3.2.
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Proof of Theorem 3.2: Suppose the the market conjectures a manipulation strategy

of the form a∗(p∗) = 1
ψ

[α1 − α2 + 2α3p
∗] where α1 = − 2ψk2θ

2α3−ψ(r+κ)
, α2 = k1

2α3ψ−(r+β+κ)

and α3 = ψ
[
(r + 2κ)−

√
(r + 2κ)2 + 8k2/ψ

]
/2 (observe that α1 = αo1 and α3 = αo2 the

parameters of the full observability case).
It is easy to the that the quadratic form V = α0 + α1p + α2∆ + α3p

2 with α0 =

−k2θ
2

+ 1
2ψ

(α2
1 − α2

2) + (βσ2)2α3, solves the HJB equation

rV (p,∆) = sup
a∈R

{
−k1∆− k2(p− θ2

)2 − ψ

2
a2 + [a− κp]Vp(p,∆) +

1

2
β2σ2

2Vpp(p,∆)

+[−∆(β + κ) +
1

ψ
(α1 − α2 + 2α3(p+ ∆))− a]V∆(p,∆)

}
In fact, the right-hand side yields a first order condition of the form

α(p,∆) =
1

ψ
[Vp(p,∆)− V∆(p,∆)] =

1

ψ
[α1 − α2 + 2α3p] = a∗(p).

while the market’s conjecture off the equilibrium path then takes the form a∗(p + ∆) =
1
ψ

[α1 − α2 + 2α3(p+ ∆)], as expressed in the last line of the HJB equation. Inserting the
above first order condition along with the corresponding expressions for V, Vp, V∆ and Vpp
in the HJB equation yields the system of equations

(α0) : rα0 = −k2θ
2

+
1

2ψ
(α2

1 − α2
2) + (βσ2)2α3

(α1) : rα1 = 2k2θ − α1κ+
2α1α3

ψ

(α2) : rα2 = −k1 + α2

[
2α3

ψ
− (β + κ)

]
(α3) : rα3 = −k2 − 2α3κ+

2α2
3

ψ
.

The expressions for αi, i = 0, 1, 2, 3, stated above are the unique solution to this system.
In order to show that V is the policymaker’s value function and a∗ a MPE, two things

remain to be checked:

1. Any feasible strategy â such that E
[∫∞

0
e−rt

∣∣∣− k1∆a,a∗

t − k2(pât − θ)2 − ψ
2
â2
t

∣∣∣dt] <
∞, must also satisfy lim sup

t→∞
e−rtE[V (pat , ∆̂

∗
t )] ≥ 0.

2. Second, that along the strategy αt := 1
ψ

[α1−α2+2α3pt], lim inf
t→∞

e−rtE[V (pαt ,∆
α,∗
t )] ≤

0, where pα denote the perceived inflation process under the control α, and ∆α,∗ the
belief asymmetry process under (α, a∗).34

34The existence of solutions pα and ∆α,∗ to such linear equations is trivial, as α and a∗ are linear
policies.
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1. Consider a feasible strategy â such that the policymaker’s payoff is finite. Observe
that under the pair (â, a∗), the belief-asymmetry process ∆̂∗ takes the form

∆̂∗ = e−ϑt∆o + [1− e−ϑt]α1 − α2

ψϑ
+

∫ t

0

e−ϑ(t−s)
[

2α3

ψ
pâs + âs

]
ds (43)

with ϑ := β + κ − 2α3 > 0. Moreover, since pât = e−κtp0 +
∫ t

0
e−κ(t−a)[âsds + βσ2dZ

0

s],
t ≥ 0, we can use integration by parts and Fubini’s theorem to show that the the payoff
under strategy â can be written as

E
[∫ ∞

0

e−rt
(
−k1∆̂∗t − k2(pât − θ)2 − ψ

2
â2
t

)
dt

]
= E

[∫ ∞
0

e−rt
(
−k2(pât )

2 + C1âs −
ψ

2
â2
s

)
dt

]
+ C2

for some constants C1 and C2. Therefore, the payoff under â will be finite if and only if

E
[∫ ∞

0

e−rt(pât )
2dt

]
<∞ and E

[∫ ∞
0

e−rtâ2
tdt

]
<∞. (44)

from where we conclude that lim inf
t→0

E[e−rt(pât )
2] = 0. But since α3 < 0, we conclude that

lim sup
t→0

E[e−rtα3(pât )
2] = 0.

Now, plugging the expression for pât into (43) and using integration by parts, we can
find positive constants C3, C4 and C5 such that

|E[∆̂∗t ]| ≤ C3e
−ϑt + C4

∫ t

0

e−κ(t−s)E[|âs|]ds+ C5

∫ t

0

e−ϑ(t−s)E[|âs|]ds.

The Cauchy-Schwartz’s and Jensen’s inequalities then yield that

e−rt
∫ t

0

e−λ(t−s)E[|as|]ds ≤
(
e−rte−2λt

∫ t

0

e2λsds

)1/2

︸ ︷︷ ︸
L1
t :=

(
e−rt

∫ t

0

E[a2
s]ds

)1/2

︸ ︷︷ ︸
L2
t :=

.

for λ = κ, ϑ > 0. It is easy to see that L1
t → 0 as t → ∞. For L2

t , observe that
e−rt

∫ t
0
E[â2

s]ds <
∫ t

0
e−rsE[â2

s]ds <
∫∞

0
e−rsE[â2

s]ds <∞, and thus L2 is uniformly bounded.

This shows that lim
t→0

e−rtE[∆̂∗t ] = 0. Furthermore, since the exact same argument (Cauchy-

Schwartz and Jensen) applied to E[pât ], it is also that lim
t→0

e−rtE[pat ] = 0, concluding that

lim sup
t→∞

e−rtE[V (pat ,∆
a,a∗

t )] ≥ 0 for any feasible strategy satisfying under which the poli-

cymaker attains finite utility.

2. Suppose that the policymaker follows the policy α(p,∆) = αt := 1
ψ

[α1−α2 + 2α3p].
Then, the belief-asymmetry process evolves according to

d∆t = [−(β + κ)∆t + α3∆]dt, t > 0, ∆0 = ∆o.
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As a consequence, ∆α,∗
t = e−(r+β+κ−α3)t∆o. Moreover, since α3 < 0, e−rt∆α,∗

t → 0 as
t→∞. Now the posterior belief process pαt is the solution to the SDE

dpt = (α1 − α2 + α3pt − κpt)dt+ βσ2dZ
0

t , t > 0,

i.e. (pαt )t≥0 is mean reverting around α1−α2

κ−α3
at rate κ − α3 > 0. As a result, this policy

delivers finite utility and, moreover, lim
t→∞

E[pαt ] = lim
t→∞

E[(pαt )2] = 0. This concludes the

proof of the theorem.

�

9 Appendix B: Proofs of Sections 4 and 5

Proof of Theorem 4.4: Take any solution (U, q) satisfying the conditions of the theorem,
and suppose that the small players believe that the long-run player is following the strategy
a∗(p∗t ) := g′−1(βq(p∗t )), t ≥ 0. Consider the function

U(p+ ∆) + [q(p+ ∆)− U ′(p+ ∆)]∆ +
Γ

2
∆2 (45)

We will show that, for a suitably chosen Γ, the assumptions in the theorem ensure that
this function is an upper bound to the long-run player’s payoff under any feasible strategy.

More concretely, given a feasible strategy â := (ât)t≥0, define the process

V̂t :=

∫ t

0

e−rs[h(ps+∆̂t)−g(âs)]ds+e
−rt
{
U(pt + ∆̂t) + [q(pt + ∆̂t)− U ′(pt + ∆̂t)]∆̂t +

Γ

2
∆̂2
t

}
,

where h(p) := u(p, a∗(p)), and ∆̂ denotes the belief asymmetry process under the pair
(a∗(p∗t ), â). Applying Ito’s rule to V̂ we obtain

dVt
e−rt

= [h(p̂∗t )− g(ât)]dt− r
{
U(p̂∗t ) + [q(p̂∗t )− U ′(p̂∗t )]∆̂t +

Γ

2
∆̂2
t

}
dt (46)

+

{
U ′(p̂∗t )[−κ(p̂∗t − η)− β∆̂t + β(ât − a∗(p̂∗t ))] +

1

2
(βσ)2U ′′(p̂∗t )

}
︸ ︷︷ ︸

(i)

dt

+∆t

{
q′(p̂∗t )[−κ(p̂∗t − η)− β∆̂t + β(ât − a∗(p̂∗t ))] +

1

2
(βσ)2q′′(p̂∗t )

}
︸ ︷︷ ︸

(ii)

dt

−∆̂t

{
U ′′(p̂∗t )[−κ(p̂∗t − η)− β∆̂t + β(ât − a∗(p̂∗t ))] +

1

2
(βσ)2U ′′′(p̂∗t )

}
︸ ︷︷ ︸

(iii)

dt

+[q(p̂∗t )− U ′(p̂∗t )][−(β + κ)∆̂t + β(ât − a∗(p̂∗t ))]dt
+Γ∆̂t[−(β + κ)∆̂t + β(ât − a∗(p̂∗t ))]dt+ Brownian term,
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where we have used that p̂∗t := pt + ∆̂t evolves according to dp̂∗t = (−κ(p̂∗t − η) + β(â −
a∗(p̂∗t ))− β∆̂t)dt+ βσdZt. Now, using the (30) and (31) we obtain

(i) = rU(p̂∗t )− h(p̂∗t ) + g(a∗(p̂∗t )) + U ′(p̂∗t )[−β∆̂t + β(ât − a∗(p̂∗t ))]

(ii) =

[
r + β + κ+ β

da∗(p∗t )

dp

]
q(p∗t )− h′(p̂∗t ) + q′(p̂∗t )[−β∆̂t + β(ât − a∗(p̂∗t ))]

(iii) = (r + κ)U ′(p̂∗t )− h′(p̂∗t ) + g′(a∗(p̂∗t ))︸ ︷︷ ︸
=βq(p̂∗t )

da∗(p∗)

dp∗
+ U ′′(p̂∗t )[−β∆̂t + β(ât − a∗(p̂∗t ))]

with the last equality coming from the fact that U is three times differentiable. Conse-
quently, and using that g is strongly convex,

dVt
e−rt

= [g(a∗(p̂∗t ))− g(ât) + g′(a∗(p̂∗t ))(ât − a∗(p̂∗t ))]dt

+β[Γ + q′(p̂∗t )− U ′′(p̂∗t )]∆̂t(ât − a∗(p̂∗t ))dt

−[β(q′(p̂∗t )− U ′′(p̂∗t )) + Γ
(r

2
+ β + κ

)
]∆̂2

tdt+ Stochastic integral

⇒ V̂t − V̂0 ≤
∫ t

0

e−rs
(
−ψ

2
(âs − a∗(p̂∗s))2 + β[Γ + q′(p̂∗s)− U ′′(p̂∗s)]∆̂s(âs − a∗(p̂∗s))

−
[
β(q′(p̂∗s)− U ′′(p̂∗s)) + Γ

(r
2

+ β + κ
)]

∆̂2
s

)
ds+ Stochastic integral

The integrand of the Lebesgue integral is a quadratic form in (∆̂, â − a∗(p̂∗)). Letting
R∗(p) := q′(p)− U ′′(p), this quadratic form will be non-positive whenever Γ is such that

ψ

2

[
βR∗(p̂∗t ) + Γ

(r
2

+ β + κ
)]
− β2[Γ +R∗(p̂∗t )]

2

4
≥ 0 (47)

over the set {R∗(p)| p ∈ R}. Observe that given any Γ > 0, the previous condition will be
violated when |R∗| is large. Thus, in order for the previous inequality to hold, R∗ must
take values in an interval of finite length, and the endpoints of this interval will depend
on Γ. Since R∗ can potentially take both negative and positive values, we choose Γ > 0
that maximizes the length of the symmetric interval in which R∗ is allowed to take values
without violating inequality (47).

More specifically, take any Γ > 0 and observe that at R∗ = −Γ the previous equality
always holds. Evaluating the left-hand side of (47) at R∗ = Γ, we see that equality will

hold if and only if Γ ≥ 0 and Γ ≤ ψ(r+2κ+4β)
4β2 . This allows us to conclude that when

Γ = ψ(r+2κ+4β)
4β2 and |U(p)− q(p)| ≤ Γ for all p ∈ R, V̂ is a supermartingale.

A standard localizing argument (which uses the growth conditions (i) in the Theorem)
allows us to get rid of the stochastic integral through taking expectations, concluding that

E[e−rt[U(p̂∗t ) + [q(p̂∗t )− U ′(p̂∗t )]∆̂t + Γ∆̂2
t ] ≤ U(p0)︸ ︷︷ ︸

=V̂0

−E
[∫ t

0

e−rs[h(p̂∗s)− g(âs)]ds

]
.

The limit conditions (ii) in the Theorem allow us to conclude the the lim sup of the
left hand side in the previous expression is larger or equal than zero. Applying the
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dominated convergence theorem on the right hand side we obtain we conclude that

E
[∫ t

0
e−rs[h(p̂∗s)− g(âs)]ds

]
converges to E[V̂∞] := E

[∫∞
0
e−rs[h(p̂∗s)− g(âs)]ds

]
. Hence

E[V̂∞] = E
[∫ ∞

0

e−rt[h(p̂∗t )− g(ât)]ds

]
≤ U(p0).

Now, take any solution U ∈ C2(R) to the ODE (30) satisfying a quadratic growth
condition. Moreover, since (pt)t≥0 is a mean reverting process or a Brownian martingale,
there exists C > 0 such that |U(pt)| ≤ C(1 + p2

t ). Therefore, E[e−rtU(pt)]→ 0 when t→
∞. Standard results yield that U admits the probabilistic (Feynman-Kac) representation

U(p) = E
[∫ ∞

0

e−rt(h(ps)− g(g′−1(βq(ps))))ds

]
with dpt = −κ(pt− η)dt+ βσdZt, t > 0, p0 = p (Pham (2009)). Hence, U(p0) is an upper
bound to the long-run player’s payoff, and is attained under a∗. This concludes the proof.

�

In order to prove the existence results in Propositions 5.2 and 5.3 we rely on the
following results De Coster and Habets (2006) and Schmitt (1969):

Theorem 9.1. (De Coster and Habets (2006), Theorem II.5.6) Consider the sec-
ond order differential equation

u′′ = f(t, u, u′) (48)

with f : R3 → R a continuous function. Let α, β of class C2(R) such that α ≤ β, and
consider the set E = {(t, u, v) ∈ R3|α(t) ≤ u ≤ β(t)}. Assume that for all t ∈ R

(C1) α′′ ≥ f(t, α, α′) and β′′ ≤ f(t, β, β′).

Assume also that for any bounded interval I, there exists a positive continuous function
φI : R+ → R that satisfies ∫ ∞

0

sds

ϕI(s)
=∞, (49)

and for all t ∈ I, (u, v) ∈ R2 with α(t) ≤ u ≤ β(t), |f(t, u, v)| ≤ ϕI(|v|). Then (48) has
at least one solution u ∈ C2(R) such that α ≤ u ≤ β.

Remark 9.2. The proof of this theorem in fact delivers a stronger result for the case in
which α and β are uniformly bounded and ϕI is independently of I. In this case, the
authors prove the existence of u ∈ C2 solution to (48) satisfying α ≤ u ≤ β and also that
u′ is uniformly bounded. See the p. 123 in De Coster and Habets (2006) for proof of the
Theorem and the discussion that addresses this remark.

Proof of Proposition 5.2: The incentives equation can be written as

q′′(p) =
2

σ2

[(
r + β + κ+ β2 q′(p)

g′′((g′)−1(βq(p)))

)
q(p) + κ(p− η)q′(p)− h′(p)

]
︸ ︷︷ ︸

:=f(p,q,q′)

.
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Let m := inf
p∈R

h′(p) and M := sup
p∈R

h′(p). Take A,B ∈ R and notice that

f(p,A, 0) ≤ 0⇔ (r + β + κ)A− h′(p) ≤ 0⇔ A ≤ m

r + β + κ

f(p,B, 0) ≥ 0⇔ (r + β + κ)B − h′(p) ≥ 0⇔ B ≥ M

r + β + κ
. (50)

Hence, we can try to find a solution taking values in J :=
[

m
r+β+κ

, M
r+β+κ

]
.

Since g is twice continuously differentiable and strongly convex, there exists ψ > 0
such that g′′(·) ≥ ψ. Hence, for bounded interval I ⊂ R, if p ∈ I and u ∈ J we have that∣∣∣∣∣β2 q′(p)

g′′((g′)−1(βu))

∣∣∣∣∣ ≤ β2

ψ
|q′(p)|.

Consequently, it is say to see that for any bounded interval I we can find constants φ0 > 0
and φ1,I > 0 such that

|f(p, u, v)| ≤ ϕI := φ0 + φ1,I |v|,

when p ∈ I and u ∈ J . Since that the right-hand side satisfies the Nagumo condition
(49), Theorem 9.1 ensures the existence of a solution to the incentives equation that is of
class C2(R) and that takes values in J . Finally, observe that when κ = 0 we can choose
φ1,I > 0 independent of I, so the existence of a solution that in addition has a uniformly
bounded derivative is also ensured.

Now we study the asymptotic behavior of any bounded solution to the incentives
equation taking values in J . We start showing the both limits exist, and then separate
divide the analysis for the cases κ = 0 and κ > 0.

Lemma 9.3. Suppose that both h′∞ := lim
p→∞

h′(p) and h′−∞ := lim
p→−∞

h′(p) exist. Then

q∞ := lim
p→∞

q(p) and q−∞ := lim
p→−∞

q(p) exist.

Proof: Suppose that lim
p→∞

q(p) does not exist. Then (q(p))p≥0 has at least two different

cluster points c1 and c2, one of them different from h′∞
r+β+κ

. Without loss of generality,

assume that c := max{c1, c2} > h′∞
r+β+κ

and call the respective distance δ > 0. Given

ε < δ/3, we can find a sequence (pn)n∈N of local maxima of (q(p))p≥0 such that q(pn) > c−ε
for all n ≥ N̄ , some N̄ ∈ N. But evaluating the incentives equation in the sequence pn
for large n we obtain

q′′(pn)︸ ︷︷ ︸
≤0

=
2(r + β + κ)

(βσ)2

[
q(pn)− h′(pn)

(r + β + κ)

]
> δ/3

where the right-most inequality comes from the fact that for large n, |h′(pn) − h′∞| <
ε(r + β + κ). This is a contradiction. The case in which c := min{c1, c2} < h∞

r+β+κ
is

analogous if we construct a sequence of local minima. Consequently, lim
t→∞

q(p) exists, and

since the argument for the other limit is analogous, lim
t→−∞

q(p) must exist as well.
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Now we show that the limits in (34) hold:
Case κ = 0: Let β(0) denote the sensitivity of beliefs to new information evaluated

at κ = 0. Suppose that q(p) converges to some L 6= h′∞
r+β(0)

as p→∞. If this convergence

is monotone, then q′(p) and q′′(p) must converge to zero, so

βσ2

2
q′′(p)− β2 q(p)q′(p)

g′′((g′)−1(βq(p)))
→ 0, as q(p) is uniformly bounded

and
lim
p→∞
−h′(p) + (r + β(0))q(p) 6= 0.

Thus, the incentives equation would not hold for p large enough, a contradiction.
Suppose now that this convergence is not monotone, so q(p) oscillates as it converges

to L. If L > h′∞
r+β(0)

(which can occur only when h′∞ < M), we can find a sequence of local

maxima (pn)n∈N such that q′(pn) = 0, q′′(pn) ≤ 0 and

q′′(pn) =
2

βσ2
[−h′(pn) + (r + β(0))q(pn)] .

But since (r+β(0))q(pn) converges to L(r+β(0)) > h′∞, the incentives equation is violated

for n large enough, a contradiction. Equivalently, if L < h′∞
r+β(0)

(which can occur only

when h′∞ > m), we can find a sequence of minima such that an analogous contradiction

holds. Thus, q(p) must converge to h′∞
r+β(0)

. The case p→ −∞ is identical.

Case κ > 0: We show that (34) holds in a sequence of steps.

Step 1: lim
p→∞

q′(p) = lim
p→−∞

q′(p) = 0 and q′ is uniformly bounded. We show that the

first limit exists (for the other limit the argument is analogous). Notice that q′ cannot
diverge; otherwise, q becomes unbounded, a contradiction. Instead, suppose that (q′(p))
has at least two cluster points c1 and c2, and that c := max{c1, c2} > 0 (otherwise, it
must be the case that min{c1, c2} < 0, and the argument is identical). In this case, we
can find a sequence of local maxima of (pn)n∈N of q′ such that q′(pn) > c− ε > 0 for large
n. Then, q′′(pn) = 0, so the left-hand side of the incentives equation is identically equal
to zero, but the right-hand side diverges when κ > 0, as pnq

′(pn) → ∞. Hence, q′(p)
must converge. Clearly, it must converge to zero; otherwise, q(p) becomes unbounded, a
contradiction.

Finally, notice that from here we can conclude that q′ is uniformly bounded, as |q′|
converges to zero asymptotically in either direction and it is continuous.

Step 2: lim
p→∞

pq′(p) = lim
p→−∞

pq′(p) = 0. Notice that lim
p→∞

pq′(p) either exists or takes

value +∞. The latter cannot be true, as the incentives equation would imply that
lim
p→∞

q′′(p) = +∞, implying that q′ diverges, a contradiction. Suppose that lim
p→∞

pq′(p) =

L > 0. Then, given ε > 0 small and p0 large enough, we have that for p > p0

q′(p) >
L− ε
p

> 0⇒ q(p) > q(p0) + (L− ε) log(p/p0),
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which implies that q(p) = O(log(p)), a contradiction. The case L < 0 is analogous,
allowing us to conclude that lim

p→∞
pq′(p) = 0. Finally, the analysis for limit lim

p→−∞
pq′(p) = 0

is identical.

Step 3: lim
p→∞

q′′(p) = lim
p→−∞

q′′(p) = 0. Using Step 1 and Step 2, the incentives equation

implies that lim
p→−∞

q′′(p) exists. But if this limits is not zero, then q′ diverges as p → ∞,

as q′(p) = O(p), a contradiction. Hence, lim
p→−∞

q′′(p) = 0. The other limit is analogous.

Since q′(p), pq′(p) and q′′(p) converge all to zero as p ± ∞, the incentives equation
implies that

0 = lim
p→±∞

q′′(p) = lim
p→±∞

[(r + β + κ)q(p)− h′(p)],

from where we conclude.

�

Proof of Proposition 5.3: We first show that, given q a bounded solution to the in-
centives equation, there exists a solution to (30) satisfying a quadratic growth conditions;
for this purpose we apply Theorem 9.1. Then we apply the Feynman-Kac probabilistic
representation theorem to show that the unique solution to (30) satisfying a quadratic
growth and a transversality condition is precisely the long-run player’s on-path payoff.
Finally, we show via first principles that the long-run player’s payoff satisfies a linear
growth condition, and that it has a uniformly bounded derivative when q′ is uniformly
bounded.

Let α(p) = −A − Bp2. It is easy to see that given any A,B > 0 for every bounded
interval I we can find constants φ0,I , φ1,I > 0 such that

2

σ2
| − h(p) + g((g′)−1(βq(p))) + κv(p− η) + ru|︸ ︷︷ ︸

:=f(p,u,v)

≤ φ0,I + φ1,I |v| := ϕI(|v|)

(u, v) ∈ R2 is such that |u| ≤ A + Bp2, p ∈ I. Observe that the right hand side satisfies
the Nagumo condition (49).

Now, since G := sup
p∈R
|g((g′)−1(βq(p)))| <∞,

−h(p) + g((g′)−1(βq(pt)))− κα′(p)(p− η)− rα(p)︸ ︷︷ ︸
:=

(βσ)2

2
f(p,−α(p),−α′(p))

≤ C(1+|p|)+G−2Bκ(p−η)−r(A+Bp2)

where we have also used that ‖h′‖∞ <∞ implies that h satisfies a linear growth condition
(i.e. there exists C > 0 such that |h(p)| ≤ C(1 + |p|) for all p ∈ R). Consequently,

C(1 + |p|) +G− 2Bκ(p− η)− r(A+Bp2) ≤ −βσ
2

2
α′′(p) = −Bβσ2

⇔ H(p) :=
(
C +G+Bβσ2 + 2Bκη − rA

)︸ ︷︷ ︸
(1)

+
(
C|p| − 2Bκp− rBp2

)︸ ︷︷ ︸
(2)

≤ 0, ∀p ∈ R.

Given any B > 0, (1) ≤ 0 is guaranteed to hold when rA ≥ C + G + 2Bβσ2/2 + 2Bκη.
Thus, if κ > 0, (2) ≤ 0 will be automatically satisfied if 2Bκ > C ⇔ B > C/2κ, yielding
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H(·) ≤ 0. If instead κ = 0, (2) will be violated for |p| small, but choosing B sufficiently
large, and then A satisfying the previous inequality with enough slackness ensures that
H(p) ≤ 0 for all p ∈ R.

For ν(p) = −α(p), notice that

−h(p) + g((g′)−1(βq(pt))) + κν ′(p)(p− η) + rν(p)︸ ︷︷ ︸
:=

(βσ)2

2
f(p,ν(p),ν′(p))

≥ −C(1+|p|)−G+2Bκ(p−η)+r(A+Bp2).

So imposing, βσ2

2
ν ′′(p) = Bβσ2 ≤ −C(1 + |p|) − G + 2Bκ(p − η) + r(A + Bp2) yields

the exact same condition found for α. Consequently, if we choose A,B satisfying the
conditions above, α and ν are lower and upper solutions, respectively. Thus, there exist
a U ∈ C2(R) solution to (30) such that |U(p)| ≤ ν(p), which means that U satisfies a
quadratic growth condition. Finally, the fact that κ ≥ 0 and that U has quadratic growth
ensures that E[e−rtU(pt)] → 0 as t → 0. Thus, the probabilistic representation follows
from the Feynman-Kac formula in infinite horizon (see Pham (2009) Remark 3.5.6.).

We conclude the proof by showing that if q′ is uniformly bounded, (i) U ′ is uniformly
bounded and that (ii) U satisfies a linear growth condition. For p ∈ R and h > 0 let
pht := e−κt(p + h) + (1 − e−κt)η + σ

∫ t
0
e−κ(t−s)dZs, that is, the common belief process

starting from p0 = p+ h, h ≥ 0. Notice that pht − p0
t = e−κth for all t ≥ 0, so

|U(p+ h)− U(p)| ≤ E
[∫ ∞

0

e−rt(|h(pht )− h(p0
t )|+ |g(g′−1(βq(pht )))− g(g′−1(βq(p0

t )))|)dt
]

≤ (‖h′‖∞ +R)h

r
, for some R > 0,

where we have used that q′ is uniformly bounded in R and that g(g′−1(·)) is Lipschitz over
the set [ βm

r+β+κ
, βM
r+β+κ

]. Hence, U ′ is uniformly bounded.

Finally, it is easy to see that if h′(p) is uniformly bounded, then h′ satisfies a linear
growth condition. Also, since q(·) is uniformly bounded, G := sup

p∈R
g(g′−1(βq(p))) < ∞.

When κ > 0, pt = e−κtp0 + κη
∫ t

0
e−κ(t−s)ds+ σ

∫ t
0
e−κ(t−s)dZs, so

|U(p0)| ≤ E
[∫ ∞

0

e−rtC

(
1 + κηt+ |p0|+

∣∣∣ ∫ t

0

e−κ(t−s)dZs

∣∣∣)+G)dt

]
But since

∫ t
0
e−κ(t−s)dZs ∼ N (0, 1−e−2κt

2κ
), the random part in the right-hand side of the

previous expression has finite value. When κ = 0 the same is true, as Zt =
√
tZ1 in

distribution. Consequently, there exists K > 0 such that |U(p0)| ≤ K(1 + |p0|).

�

Proof of Theorem 5.4: Suppose that κ = 0 and take any bounded solution q to
the incentives equation satisfying that q′ is uniformly bounded. Denote by ∆̂ the belief
asymmetry process when the long-run player follows the feasible strategy â := (ât)t≥0 and
the small players construct beliefs using a∗(p∗t ) := g′−1(βq(p∗t )), t ≥ 0. Observe that such
∆̂ := (∆̂t)t≥0 exists. In fact, since q and q′ are uniformly bounded, the two-dimensional
SDE with random coefficients

dp∗t = [−κ(p∗t − η) + β(ât − a∗t (p∗t )) + β(pt − p∗t )]dt+ σdZY
t

dpt = −κ(pt − η)dt+ σdZY
t
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has a drift and volatility that are globally Lipschitz, and both grow at most linearly
in ‖(p, p∗)‖ (with a slope that is independent of â). Also, â satisfies the integrability
condition E[

∫ t
0
a2
sds] < ∞, t ≥ 0. Consequently, there exists a unique strong solution

(p, p∗) to the previous SDE (Theorem 1.3.15 in Pham (2009)). Hence, there is a unique
solution for the dynamic of ∆. Now that we know that the set of feasible strategies is
non-empty, I prove the theorem in two steps:

Step 1: Conditions (i) and (ii) in Theorem 4.4 hold. Observe that from
Proposition 5.3, U(·) has a linear growth condition (hence, quadratic growth condition),
and U ′ is uniformly bounded, so the linear growth condition holds trivially. Also since q
uniformly bounded, the linear growth condition holds as well. Thus, (i) in Theorem 4.4
holds.

As for condition (ii), we first show that lim
t→∞

e−rtE[∆̂t] = 0. Observe that

∆̂t = e−βt ∆̂0︸︷︷︸
=0

+β

∫ t

0

e−β(t−s)[âs − a∗(ps + ∆̂s)]ds

⇒ |∆̂t| ≤ β

∫ t

0

e−β(t−s)|âs|ds︸ ︷︷ ︸
It:=

+ β

∫ t

0

e−β(t−s)|a∗(ps + ∆̂s)|ds︸ ︷︷ ︸
Jt:=

. (51)

Since q(·) is uniformly bounded there exists K1 > 0 such that J1 ≤ K1(1− e−βt). As for
I1 notice that∫ t

0

e−β(t−s)|âs|ds ≤
(∫ t

0

e−2β(t−s)ds

)1/2(∫ t

0

â2
sds

)1/2

⇒ |e−rtE[∆̂t]| ≤ e−rt|K1(1− e−βt)|︸ ︷︷ ︸
→0 as t→∞

+

(
e−rt

∫ t

0

e−2β(t−s)ds

)1/2

︸ ︷︷ ︸
→0 as t→∞

(
e−rt

∫ t

0

E[â2
s]ds

)1/2

<∞

for all t ≥ 0, where the right-most inequality comes form the fact that â ∈ L2. But

e−rt
∫ t

0

E[â2
s]ds <

∫ t

0

e−rsE[â2
s]ds <

∫ ∞
0

e−rsE[â2
s]ds <∞

because otherwise, by strong convexity, the total cost of manipulation would be +∞, a
contradiction. Hence, e−rtE[∆̂t]→ 0 as t→∞.

With this in hand, it is easy to show that all the limits in (ii) holds. This is because
|U(pt + ∆̂t)| ≤ C1(1 + |pt|+ |∆̂t|), |q(pt + ∆̂t)∆̂t| ≤ C2|∆̂t| and |U ′((pt + ∆̂t)∆̂t| ≤ C3|∆̂t|,
for some constants C1, C2 and C3 all larger than zero.

Step 2: Condition (iii) in Theorem 4.4 holds. Recall that the long-run player’s
payoff (35)

E
[∫ ∞

0

e−rt[h(pt)− g((g′)−1(βq(pt)))]dt

]
=: U(p)

with dpt = −κ(pt − η)dt+ σdZt, t > 0, and p0 = p, is the unique C2 solution to the ODE
(30) satisfying a quadratic growth condition. Because the right-hand side of that ODE
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is differentiable, U is three times differentiable. Hence, U ′ satisfies the following ODE in
p 7→ f(p):

f ′′(p) =
2

σ2

[
−h′(p) + β

q(p)q′(p)

g′′(g′−1(βq(p)))
+ rf(p)

]
, p ∈ R. (52)

Claim: The ODE (52) has a unique solution that is uniformly bounded. Hence, such
solution corresponds to U ′(p).

Proof of the claim: Consider two bounded solutions f1 and f2 of the ODE (52),
and suppose that there exists p0 such that f1(p0) > f2(p0). If f ′1(p0) ≥ f ′2(p0), then
f ′′1 (p0) > f ′′2 (p0), which implies that f ′1 − f ′2 is strictly increasing at p0. But then, the
difference f1 − f2 increases (strictly) in a neighborhood to the right of p0. Applying the
same argument to the right of t0 allows us to conclude that f ′1−f2 is strictly increasing on
the set (p0,∞), so the difference f1 − f2 becomes unbounded, a contradiction. If instead
f ′1(p0) < f ′2(p0) an analogous argument applies over the set (−∞, p0).

�

The previous claim allows us to determine U ′ through finding the unique bounded
solution to (52). In fact, it is easy to see that

U ′(p) = − 1

2
√
ν

[∫ p

−∞
e−
√
ν(p−y)`(y)dy +

∫ ∞
p

e−
√
ν(y−p)`(y)dy

]
. (53)

where ν := 2r/σ2 and `(y) := 2
σ2

[
−h′(y) + βq(y)q′(y)

g′′(g′−1(βq(y)))

]
is a bounded solution to (52) –

hence the derivative of the long-run player’s on-path utility. Now we derive an analytic
expression for U ′′ − q′. Differentiating (53) yields

U ′′(p) =
1

2

∫ p

−∞
e−
√
ν(p−y)`(y)dy − 1

2

∫ ∞
p

e−
√
ν(y−p)`(y)dy.

Using the incentives equation we obtain that

`(p) :=
2

σ2

[
−h′(p) +

βq(p)q′(p)

g′′(g′−1(βq(p)))

]
= q′′(p)− 2(r + β)

σ2
q(p).

and straightforward calculations yield that

U ′′(p) = q′(p) +
2β

σ2

[
−1

2

∫ p

−∞
e−
√
ν(p−y)q(y)dy +

1

2

∫ ∞
p

e−
√
ν(y−p)q(y)dy

]
︸ ︷︷ ︸

−x(p):=

. (54)

It is easy to see that x(p) is twice continuously differentiable, that satisfies a quadratic
growth condition (in fact, it is bounded), and also that E[e−rtx(pt)] → 0 as t → ∞.
Moreover, it satisfies the ODE x′′(p) = 2

σ2 [−βq(p) + rx(p)]. The Feynman-Kac formula
says then that

U ′′(p)− q′(p) =: −x(p) = −E
[∫ ∞

0

e−rsβq(ps)ds
∣∣∣p0 = p

]
.
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Using (54), and recalling that q(·) ∈
[
m
r+β

, M
r+β

]
, that ν = 2r/σ2 and that σ = βσξ, we

get

|U ′′(t)− q′(t)| ≤ M −m

(r + β)
√

2rσ2
ξ

, t ≥ 0.

But since β = σθ/σξ when κ = 0, we have that (32) in Theorem 4.4 will hold if

M −m

(r + β)
√

2rσ2
ξ

≤ ψ(r + 4β + 2κ)

4β2

∣∣∣∣∣
κ=0

⇔ M −m
ψ

≤

√
2rσ2

ξ (rσξ + 4σθ)(rσξ + σθ)

4σ2
θ

.

Since condition (37) is tighter than the one just derived, condition (iii) in Theorem 4.4
holds. This concludes the proof.

�

10 Appendix C: Proofs of Section 6

Proof of Theorem 6.2: In order to prove Theorem 6.2, I verify that the conditions of
Theorem 4.2 hold. That is, for suitably chosen coefficients:

1. V (p,∆) = α0 + α1p+ α2∆ + α3p∆ + α4p
2 + α5∆2 solves the PDE (23)-(24);

2. For any feasible strategy â := (ât)t≥0, lim sup
t→∞

E[e−rtV (pt, ∆̂
∗
t )] ≥ 0, where ∆̂∗t de-

notes the belief asymmetry process under â and a∗(p∗t ) = β
ψ
V∆(p∗t , 0), t ≥ 0.

3. Under the Markovian control α(p,∆) := β
ψ
V∆(p,∆) and the Markovian conjecture

a∗(p+ ∆) := β
ψ
V∆(p+ ∆, 0) the ODE

d∆t = [−(β + κ)∆t + β(α(pt,∆t)− a∗(pt + ∆t))]dt (55)

has a unique solution ∆α,∗ := (∆α,∗
t )t≥0 a.s. satisfying lim inf

t→∞
E[e−rtV (pt,∆

α,∗
t )] ≤

0, and the processes αt = β
ψ
V∆(pt,∆

α,∗
t ) and a∗t := β

ψ
V∆(pt + ∆α,∗

t , 0)) are feasible.

Before proving 1-3, I make some important observations:

(i) Given a∗(p∗) := β
ψ

[α2 + α3p
∗] and any feasible strategy â, there exists a unique

solution ∆̂∗ := (∆̂∗t )t≥0 to (55). In fact, the two-dimensional SDE with random
coefficients

dp∗t = [−κ(p∗t − η) + β(ât − a∗t (p∗t )) + β(pt − p∗t )]dt+ σdZY
t

dpt = −κ(pt − η)dt+ σdZY
t (56)

has a drift and volatility that are globally Lipschitz, and both grow at most linearly
in ‖(p, p∗)‖ (with a slope that is independent of â). Also, â satisfies the integrability
condition E[

∫ t
0
a2
sds] <∞, t ≥ 0. Consequently, there exists a unique strong solution

(p, p∗) to the previous SDE (Theorem 1.3.15 in Pham (2009)). Hence, there is a
unique solution for the dynamic of ∆.
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(ii) Given the conjecture a∗(p∗) = β
ψ

[α2 +α3p
∗], the set of feasible strategies under which

the long-run player’s payoff is finite is non-empty, so the optimization problem is
well defined. Furthermore, (a∗(p∗t ))t≥0 is a feasible strategy, and the long-run player
attains finite utility when he follows a∗.

(iii) Since dpt = −κ(pt − η)dt+ βσξdZ
Y
t , E[pt] is uniformly bounded and E[p2

t ] grows at
most linearly in t.

Step 1: It is easy to see that V (p,∆) = α0 +α1p+α2∆+α3p∆+α4p
2 +α5∆2 satisfies

the PDE (23)-(24)

rV (p,∆) = max
a

{
u0 + u1(p+ ∆)− u2(p+ ∆)2 − ψ

2
a2

+− κ[p− η]Vp(p,∆) +
1

2
β2σ2

ξVpp(p,∆)

+ [−∆(β + κ) + β(a− a∗(p+ ∆))]V∆(p,∆)}

s.t. a∗(p) ∈ arg max
a∈A
{βV∆(p, 0)a− ψ

2
a2}. (57)

if and only if

(0) : 0 = rα0 − u0 − ηκα1 +
1

2ψ
β2α2

2 − β2σ2
ξα4

(1) : 0 = rα1 − u1 + κα1 +
β2α3

ψ
α2 − 2ηκα4

(2) : 0 =

(
r + κ+ β +

β2α3

ψ

)
α2 − ηκα3 − u1

(3) : 0 = (r + β + 2κ)α3 +
β2

ψ
α2

3 + 2u2.

(4) : 0 = rα4 +
1

2ψ
β2α2

3 + 2κα4 + u2

(5) : 0 =

(
r + 2

[
κ+ β +

β2α3

ψ

])
α5 −

2β2

ψ
α2

5 + u2.

Notice that equations (2) and (3) are satisfied by α2 and α3 as in (39) and (40), respec-
tively. Moreover, given α3, equations (0), (1),(2) and (4) have a unique solution. For
equation (5), we choose its unique negative root

α5 =
r + 2(β + κ) + 2α3β2

ψ
−
√(

r + 2(β + κ) + α3β2

ψ

)2

+ 8β2u2

ψ

4β2
.

Step 2: It suffices to show that lim sup
t→∞

e−rtE[V (pt, ∆̂
∗
t )] = 0 for any feasible strategy

â that attains finite utility. This is done in two Lemmas and concludes in Corollary 10.3.

Lemma 10.1. Let â be a feasible strategy under which the the long-run player attains
finite utility. Then, there are positive constants C1 and C2(â) such that

|E[∆̂∗t ]| < C1[1 + e−(
β2α3
ψ

+β+κ)t] + C2(a)[ert(1 + e−2(
β2α3
ψ

+β+κ)t)]1/2. (58)

As a result, lim
t→∞

e−rtE[∆̂∗t ] = 0.
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Proof: Take any such strategy. Under the small players’ conjecture a∗ we can write

∆̂∗t = ∆oe−(β+κ+
β2α3
ψ

)t +

∫ t

0

e(β+κ+
β2α3
ψ

)(s−t)[βâs − β2(α2 + α3ps)]ds, t ≥ 0.

Using this and the fact that E[pt] is uniformly bounded, we find C1 s.t.

|E[∆̂∗t ]| ≤ C1[1 + e−(
β2α3
ψ

+β+κ)t] +

∫ t

0

e(β+κ+
β2α3
ψ

)(s−t)βE[|âs|]ds.

Now,

I :=

∫ t

0

e(β+κ+
β2α3
ψ

)(s−t)E[|âs|]ds <
(
ert
∫ t

0

e2(β+κ+
β2α3
ψ

)(s−t)ds

)1/2(
e−rt

∫ t

0

E[â2
s]ds

)1/2

where in the last inequality we used Cauchy-Schwarz’s and Jensen’s inequalities. But
e−rt

∫ t
0
E[â2

s]ds < C(â) :=
∫∞

0
e−rsE[â2

s]ds, which is finite since flow payoffs are bounded

by above and a attains finite utility. Therefore I ≤ C2(a)[ert(1 + e−2(
β2α3
ψ

+β+κ)t)]1/2 for
some positive constant C2(â). This proves (58).

Finally, from α3’s definition it is easy to see that β+κ+ β2α3

ψ
+ r > 0. This inequality

and the previously found bound, yield lim
t→∞

e−rtE[∆̂∗t ] = 0.

�

Lemma 10.2. Let â be a feasible strategy under which the long-run player attains finite
utility. Then, lim

t→∞
e−rtE[pt∆̂

∗
t ] = 0. As a consequence, lim inf

t→∞
e−rtE[(∆̂∗t )

2] = 0.

Proof : Applying Ito’s rule to e(
β2α3
ψ

+β+2κ)tps∆̂
∗
t we obtain the expression

pt∆̂
∗
t = e−(

β2α3
ψ

+β+2κ)tpo∆o +

∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)∆̂∗s[κηds+ βσξdZ
Y
s ]︸ ︷︷ ︸

It:=

+ β

∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)psâsds︸ ︷︷ ︸
Jt:=

−β
2

ψ

∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)[α2ps + α3p
2
s]ds︸ ︷︷ ︸

Kt:=

Because β2α3

ψ
+ β + 2κ + r > 0 the first term in the right-hand side of the previous

expression goes to zero when discounted at rate r. The same occurs with the last term,
as E[α2ps + α3p

2
s]] grows at most linearly in t.

Now, since â and a∗ satisfy the integrability condition E
[∫ t

0
|xs|2ds

]
< ∞, it is also

the case that E
[∫ t

0
|∆̂∗s|2ds

]
< ∞ for all t ≥ 0.35 Hence, the stochastic integral has zero

mean, yielding E[It] = ηκ
∫ t

0
e(

β2α3
ψ

+β+2κ)(s−t)E[∆̂∗s]ds, t ≥ 0.

35Recall that ∆̂∗t = ∆oe−(β+κ+
β2α3
ψ )t +

∫ t
0
e(β+κ+

β2α3
ψ )(s−t)[βâs − β2(α2 + α3ps)]ds, from where it is

easy to conclude.
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Using the bound (58) there exists C3(â) <∞ such that

|E[It]|
C3(â)

≤
∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)[1 + e−(
β2α3
ψ

+β+κ)s]ds

+

∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)[ers(1 + e−2(
β2α3
ψ

+β+κ)s)]1/2ds

≤
∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)ds+ e−(
β2α3
ψ

+β+2κ)t e
κt − 1

κ

+e−(
β2α3
ψ

+β+2κ)t

∫ t

0

[e(
β2α3
ψ

+β+2κ+r/2)s + e(κ+r/2)s]ds.

Observing that β2α3

ψ
+ β + ν + r > 0 and β2α3

ψ
+ β + ν + r > β2α3 + β + ν + r/2 > 0 for

ν = κ, 2κ, we conclude that e−rtE[It]→ 0.
As for Jt, applying the Cauchy-Schwartz inequality twice:

e−rt|E[Jt]| ≤
(
e−rt

∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)E[â2
s]ds

)1/2(
e−rt

∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)E[p2
s]ds

)1/2

.

Since (E[p2
t ])t≥0 is at most linear in t and β2α3

ψ
+ β + 2κ + r > 0, the last term in the

right-hand side of the previous expression goes to zero as t→∞. But observe that

e−rt
∫ t

0

e(
β2α3
ψ

+β+2κ)(s−t)E[â2
s]ds <

∫ ∞
0

e−rsE[â2
s]ds <∞,

where we used that β2α3

ψ
+ β + 2κ > 0 and the fact that â yields finite utility. Thus

lim
t→∞

e−rtE[pt∆̂
∗] = 0.

Finally, since flow payoffs are bounded by above and â delivers finite utility, we must
have that E[

∫∞
0
e−rtu(pt + ∆̂∗t )dt] <∞. Hence, lim sup

t→∞
e−rtE[u(pt + ∆̂∗t )] ≥ 0. Using that

lim
t→∞

e−rtE[pt] = lim
t→∞

e−rtE[∆̂∗t ] = 0, we obtain that

lim sup
t→∞

e−rtE[u(pt + ∆̂∗t )
2] ≥ 0⇒ lim inf

t→∞
e−rtE[(pt + ∆̂∗t )

2] = 0.

But since lim
t→∞

e−rtE[pt∆̂
∗] = 0, 0 = lim inf

t→∞
e−rtE[(pt + ∆a,a∗

t )2] ≥ lim inf
t→∞

e−rtE[(∆a,a∗

t )2].

�

With these 3 lemmas we obtain the following:

Corollary 10.3. Suppose that the function V is such that α5 < 0. Then, for any â that
delivers finite utility, lim sup

t→∞
e−rtE[V (pt, ∆̂

∗
t )] = 0.

Proof: Using Lemmas 10.1 and 10.2, we have that lim
t→∞

e−rtE[χt] = 0, for χ = p, ∆̂∗, p∆̂∗

and p2. Thus,

lim sup
t→∞

e−rtE[V (pt, ∆̂
∗
t )] = lim sup

t→∞
e−rtα5E[(∆̂∗t )

2] = α5 lim inf
t→∞

e−rtE[(∆̂∗t )
2] = 0.
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Step 3: It is easy to see that given α(p,∆) := β
ψ

(α2 + α3p + 2α5∆) and a∗(p,∆) :=
β
ψ

[α2 + α3(p + ∆)], the resulting ODE for ∆ has as unique solution the function ∆α,∗
t =

∆oeρt, t ≥ 0, with ρ := (2α5−α3)β2

ψ
− κ− β. Using α5’s definition we see that

ρ =
r −

√(
r + 2(β + κ) + 2α3β2

ψ

)2

+ 8β2u2

ψ

2
, (59)

yielding that both ρ−r and 2ρ−r are strictly less than zero. Consequently, lim
t→0

e−rtE[∆α,∗
t ] =

lim
t→0

e−rtE[(∆α,∗
t )2] = 0, which results in lim

t→∞
e−rtE[V (pt,∆

α,∗
t )] = 0. Finally, it is straight-

forward to prove that the processes αt := β
ψ

(α2 + α3pt + 2α5∆oeρt) and a∗t := β
ψ

(α2 +

α3[pt + ∆oeρt]) satisfy the integrability condition E[
∫ t

0
x2
sds], and that the long-run player

attains finite utility under α, making α a feasible control. This concludes Step 3.

Finally, we must show that any stock of belief asymmetry vanishes asymptotically.
Notice that ρ < 0 if and only if

0 ≤ 4(β + κ)2 +
4β4α2

3

ψ2
+ 4r(β + κ) +

4rβ2α3

ψ
+

8β2(β + κ)α3

ψ
+

8β2u2

ψ

⇔ 0 ≤︸︷︷︸
(∗)

(β + κ)2 + r(β + κ) +
β3α3

ψ
+
β2

ψ
[β2α2

3 + (r + β + 2κ)α3 + 2u2]︸ ︷︷ ︸
=0, by definition of α3

But using the definition of α3

β3α3

ψ
= β
−(r + β + 2κ) +

√
(r + β + 2κ)2 − 8β2u2

ψ

2

we can see that (*) is true.

�

Proof of Proposition 6.3: It is easy to see that the system (p,∆) is (i) stabilizable (the
belief-asymmetry process is controllable and private beliefs decay to zero) and that (ii)
the system is detectable (in the (p, p∗) coordinate system, the “unobserved” component p
(i.e. the state variable that does not contribute to the flow payoff) decays to zero). Con-
sequently, the solution of this linear-quadratic regulator problem exists and it is unique,
and the value function is quadratic (Theorem 12.3. in Wonham (1985)).

Guessing a solution of the form V (p,∆) = α3p∆+α4p
2 +α5∆2, αi = αi(α̂3), i = 3, 4, 5

must satisfy

α3(α̂3) =
−2u2 − 2β2

ψ
α5(α̂3)α̂3

r + β + 2κ+ β2

ψ
α̂3 − 2β2

ψ
α5(α̂3)

(60)

α4(α̂3) =
−u2 + β2α3(α̂3)

2ψ
(α3(α̂3)− 2α̂3)

r + 2κ
(61)

α5(α̂3) =
r + 2

(
β + κ+ β2

ψ
α̂3

)
±
√(

r + 2
(
β + κ+ β2

ψ
α̂3

))2

+ 8β2

ψ
u2

4β2

ψ

. (62)
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Choose the negative root of α5(α̂3). Then, α3(α̂3) and α4(α̂3) are uniquely defined. More-
over, it is easy to show that

ρ(α̂3) := β + κ+
β2

ψ
α̂3 −

2β2

ψ
α5(α̂3) =

1

2

√(r + 2

(
β + κ+

β2

ψ
α̂3

))2

+
8β2

ψ
u2 − r

 ,

yielding that r+ ρ(α̂3) > 0 and r+ 2ρ(α̂3) > 0. In particular, the denominator of α3(α̂3),
r + κ+ ρ(α̂3) > 0, so α3(α̂3) < 0.

Under the control α(p,∆) = α3(α̂3)p+α5(α̂3)∆, the belief-asymmetry process becomes

∆t = ∆0e
−ρ(α̂3)t +

β2(α3(α̂3)− α̂3)

ψ

∫ t

0

e−ρ(α̂3)(t−s)psds

with ps = p0e
−κs, s ≥ 0. Consequently, e−rt∆2

t converges to zero as t→∞. Since e−rtp2
t

also converges to zero as t→∞, the conjectured value function satisfies the transversality
conditions. It follows that V as above must be the long-run player’s value function.

Using that the denominator of α3(α̂3) is strictly positive, we conclude that

α3(α̂3) < α̂3 ⇔
β2

ψ
(α̂3)2 + (r + β + 2κ)α̂3 + 2u2 > 0,

which holds for all α̂3 ∈ R if the curvature condition is violated. This concludes the proof.
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