Reference-Dependent Job Search: Evidence from Hungary

Stefano DellaVigna§
UC Berkeley, NBER

Attila Lindner‡
UC Berkeley

Balázs Reizer§§
Central European University, CERS-MTA

Johannes F. Schmieder†
Boston University, NBER, and IZA

October 2014

Abstract

We propose a model of job search with reference-dependent preferences, where the reference point is given by recent income. Newly unemployed individuals search hard given that they are at a loss, but over time they get used to lower income, and thus search less. They search harder again in anticipation of a benefit cut, only to ultimately get used to it. The model fits the typical shape of the exit from unemployment, including the spike at the UI exhaustion point. The model also makes unique predictions on the response to benefit changes. We provide evidence using a reform in the unemployment system in Hungary. In November 2005, Hungary switched from a single-step UI system to a two-step system, with unchanged overall generosity. We show that the system generated increased hazard rates in anticipation of, and especially following, benefit cuts in ways the standard model has a hard time fitting, even when allowing for unobserved heterogeneity. We structurally estimate the model and estimate a weight on gain-loss utility comparable to the weight on the standard utility term, and a speed of adjustment of the reference point in the order of eight months. The results suggest that a revenue-neutral shift to multiple-step UI systems can speed exit from unemployment.

*We would like to thank Lajos Bódis, David Card, Sebastian Findeisen, Gábor Kézdi, Patrick Kline, Matthew Rabin, Hedvig Horváth, Edward O’Donoghue, Alex Rees-Jones, Emmanuel Saez, Mihály Szoboszlai, Owen Zidar and audiences at Boston University, at the UCSB Berhavioral Conference, and at the 2014 BEAM conference for very helpful comments. We are grateful for János Köllő, Kitti Varadovics, Mónika Bálint, Dániel Biró for giving us access to the administrative data and providing continuous help throughout the project. We also thank Tristan Gagnon-Bartsch, Jessica Shui, and Ferenc Szucs for excellent research assistance and Gautam Rao for sharing his code. Financial support from support from the Center for Equitable Growth at UC Berkeley is gratefully acknowledged. All errors are our own.

§ sdellavi@econ.berkeley.edu, ‡ lindner@econ.berkeley.edu, §§ reizer_balazs@ceu-budapest.edu, † johannes@bu.edu
1 Introduction

Unemployment insurance programs in most Western countries follow a common design. The benefits are set at a constant replacement rate for a fixed period, typically followed by lower benefits under unemployment assistance. In such systems, the hazard rate from unemployment typically declines from an initial peak the longer workers are unemployed, then surges at unemployment exhaustion, and declines thereafter. This has been shown in a variety of settings, such as Germany (Schmieder, Von Wachter and Bender 2012a), Austria (Card, Chetty and Weber 2007a), Slovenia (van Ours and Vodopivec 2008), Hungary (Micklewright and Nagy 1999) or France (Le Barbanchon 2012).[1]

It is well-known that a basic job search model a la Mortensen (1986) and van den Berg (1990) is unable to match this pattern. This model predicts an increasing exit hazard up until benefit expiration, with a constant exit rate thereafter. To match the time path of the hazards, job search models add unobserved heterogeneity among workers. More productive workers are more likely to find a job initially, leading to a decrease in the hazard over time as the workers still unemployed are predominantly of the less productive type. Apart from heterogeneity, researchers have proposed that the spike at UI exhaustion might be explained by storable job offers (Boone and van Ours 2012), as well as sanctions imposed by the UI agencies (Cockx et al. 2013).

In this paper, we propose, and test empirically for, a behavioral model of job search which can account for this time path of unemployment, and other job search patterns. We propose that workers have reference-dependent preferences over their utility from consumption. As in prospect theory (Kahneman and Tversky 1979), workers are loss-averse with respect to payoffs below the reference point. Further, we assume that the reference point is given by consumption in the recent past.

To fix ideas, consider a reference-dependent worker who was just laid off. For simplicity, assume, as we do in the paper, that the worker has no savings and that in each period she consumes the benefits.[2] Because the unemployment benefits are significantly lower than the previous wage, this worker finds the new state of unemployment particularly painful given the loss aversion, and works hard to search. Over the weeks of unemployment, however, the reference point shifts as the individual adapts to the lower consumption level, and the loss

1 The evidence for the United States is more limited, due to the lack of administrative data, with Katz and Meyer (1990) reporting a sharp spike but with small sample sizes, while others, such as Fallick (1991) do not find such a spike. Card, Chetty and Weber (2007b) provide a careful discussion of the evidence on spikes and highlight the importance of distinguishing the exit hazard from UI from the exit hazard from non-employment (that is into employment). While the exit hazard into employment shows less of a spike than the exit from UI, it is nevertheless quite pronounced in many papers relying on large and high quality administrative datasets.

2 A hand-to-mouth consumption rule is approximately accurate if workers are highly impatient, as our estimates suggest. In ongoing work, we aim to estimate a model which includes a consumption-savings decision.
aversion is thus mitigated. Hence, the worker’s search effort decreases. As the end of the UI benefits draws near, the worker, if still unemployed, anticipates the loss in consumption due to the exhaustion of the benefits, and searches harder. This force is at work also in the standard model, but it is heightened by the anticipation of the future loss aversion. If the worker does not find a job before UI expiration, the worker once again slowly adjusts to the new, lower benefit level. Hence, the hazard for unemployment for this reference-dependent worker decreases from the initial peak, increases at exhaustion, then decreases again. Hence, the hazard displays the same qualitative pattern as in the data, even in absence of unobserved heterogeneity.

Still, the two models are impossible to distinguish using the aggregate time path of exit from unemployment. As we discussed above, the standard model can also fit this path if one allows for unobserved heterogeneity, a plausible assumption. How would one test then for reference dependence in job search?

We sketch a simple model which highlights three robust predictions of the reference-dependent job search model which are not shared by the standard model, even with unobserved heterogeneity. Consider two UI systems, both of which have the same benefit level after some period T (say, from a second social insurance tier, such as welfare benefits or unemployment assistance). The first UI system however offers a constant benefit path, while the second one offers high initial benefits (up to T_1), while lower benefits between T_1 and T (Figure 1a). The standard model predicts that, starting from period T, the hazard rate in the two systems would be the same, as the future payoffs are identical (Figure 1b). Furthermore, the hazard rate before period T will be higher in the system with two step benefits given the moral hazard. Allowing for unobserved heterogeneity would alter the plot qualitatively, but the qualitative predictions above would hold.

The reference dependence model makes three qualitatively different predictions (Figure 1c). First, right after period T the hazard in the second system would be higher because the loss in consumption relative to the recent benefits is larger. Second, this difference would attenuate over time and ultimately disappear as the reference point adjusts to the lower benefit level. Third, the hazard rate in the first UI system increases already in advance of period T, in anticipation of the future loss aversion.

We evaluate a change in the Hungarian unemployment insurance system which is ideally suited for a test of the above predictions. Before November 2005, the Hungarian system featured a constant replacement rate for 270 days, followed by lower unemployment assistance benefits. After November 2005, the system changed to a two-step unemployment system: benefits are higher in the first 90 days, but lower between days 90 and 270, compared to the pre-period (Figure 2). Importantly, there was no major change in the unemployment
assistance system taking place after 270 days. As such, this UI set-up corresponds to the hypothetical case outlined above when evaluated around 270 days.

An additional feature of the set-up simplifies the evaluation of the pre- and post-regime. Differences in total benefits paid out could complicate the evaluation of the UI change given that they could lead to differences in the selection of workers still unemployed at 270 days. Yet, an important feature of the Hungary reform is that the total amount of benefits paid out to individuals unemployed up until day 270 remains about the same after the reform. Hence, differences in savings and in selection in the pre- and post-period are likely to be relatively small, allowing for a more straightforward comparison. We then evaluate the reform by comparing the hazard rates in the year before and after the reform.

The impact of the reform on hazard rates is strikingly in line with the predictions of the reference-dependent model. In the period immediately preceding the 270-day exhaustion of benefits, the hazard rate in the pre-period rises above the hazard rate in the post-period, despite the fact that benefits are higher in the pre-period. In the months following the exhaustion, the hazard rate in the pre-period remains higher, and then it ultimately converges to the post-period level after a couple months. The observed pattern around the exhaustion is consistent with the anticipation of, and then the direct effect of, the higher loss in consumption for individuals in the pre-reform period. The ultimate convergence between the two hazards indicates, in this interpretation, the timing of the reference point adjustment.

While we focused so far on the hazard rate around the exhaustion of benefits, we observe a similar spike in the hazard at 90 days in the post-period, corresponding to the first step down in benefits. Similarly to the pattern observed around day 270, the surge in hazard disappears after 3-4 months. However, notice that the spike itself in this period can be explained by the standard model.

We present several robustness checks of the policy evaluation. First, we show that controlling for a broad set of observable controls barely affects the estimated hazards. Second, we show that differential ways to control for a contemporaneous introduction of a re-employment bonus has a minimal effect on the results. (And in any case this change is unlikely to have any effect for individuals still unemployed after 200 days) Third, we present an event study analysis of the changes in the hazards showing that the breaks in the hazards occur immediately in the quarter of introduction of the reform, and do not appear to reflect previous trends.

In the final part of the paper, we structurally estimate a model of job search with optimal search effort and unobserved heterogeneity of cost of search. Since the reference-dependent model embeds the standard model, we compute the best fit both with and without allowing for

3The model does not currently allow for a reservation wage choice, and assumes that consumption equals the benefits. We aim to relax both assumptions. In preliminary estimates, allowing for a reservation wage choice has little effect on the results.
reference dependence. We estimate the model with a minimum-distance estimator, matching the empirical hazard rates from unemployment in the pre- and post-period to the predictions of the model.

The best estimate for the standard model does a relatively good job of fitting the hazard rate path in the first 200 days. In particular, it matches qualitatively the spike in the post-hazard at 90 days, and the later decrease given a substantial degree of estimated heterogeneity in costs of search. The standard model, however, is unable to capture the observed behavior leading up to, and following, the exhaustion of benefits. In particular, as discussed above, the hazard rates from period 270 on in the pre- and post-period are predicted to be almost identical, counterfactually.

The best estimate of the reference dependence model captures the spike at 90 days and the subsequent decrease, similar to the standard model (and with a closer fit). Importantly, this behavioral model also captures key features of the data which the standard model does not fit: the increase in hazard in the month prior to the expiration of benefits in the pre-period, the spike at 270 days, the decrease thereafter, and the ultimate convergence of the hazard between the pre- and post-period after a few months. The fit of the model is not perfect: the model underfits the spike at 270 days and the difference in hazards in the following two months. Still, it captures most of the qualitative features which the standard model does not fit at all. Interestingly, the reference dependent model, even when estimated without allowing for any unobserved heterogeneity, still provides a better fit of the data than the standard search model with heterogeneity. In this latter comparison, the reference-dependent model fits better despite having fewer parameters.

Turning to the point estimates, the model estimates that the weight on the gain-loss utility is at least as large as the weight on consumption utility, indicating an important role for loss aversion in job search. The estimates also indicate that the reference point is updated quite slowly, as an average over the income over the past 240 days. This is one of very few estimates of the speed of updating in backward-looking reference-point models (see also Post et al., 2008).

We examine alternative specifications of the model. For the reference-dependent model, we allow for different levels of gain and loss utility and for an alternative process of reference-point updating, leading to similar results. We also allow for different specifications of the utility functions and for estimation of the discount factor, neither of which alters the qualitative results. Third, we compare the estimates of the reference-dependent model to the estimates of a habit-formation model a la Campbell and Cochrane (1999). This latter model, like the

4 The model allows for gain utility as well. Given that the unemployment benefits never increase over the unemployment spell, the gain utility applies to the utility of reemployment, not to the utility of unemployment. Such gain utility does not alter the path of exit from unemployment substantially.
reference-dependent model, induces a temporarily high marginal utility of income following a benefit cut. The habit-formation model indeed fits the data similarly to the reference-dependent model, although the fit is not quite as good. We also show that incorporating job acceptance decisions and reservation wages does not quantitatively alter our results. Finally we show, that the estimates are quite robust to using alternative samples of unemployed workers.

The paper relates to the literature on job search and the design of unemployment insurance. This literature has mainly focused on the impact of the maximum duration and level of benefits, often using the estimated elasticities to gauge the welfare consequences of unemployment insurance (e.g. Chetty 2008, Kroft, Notowidigdo 2010, Schmieder, von Wachter, and Bender 2012). We evaluate a different type of reform: rather than changing the level or duration of benefits, the reform in Hungary changed the time path of the benefit schedule, keeping the overall payments approximately constant. While the theoretical literature of optimal unemployment insurance (e.g. Hopenhayn and Nicolini 1997, Pavoni 2007) has argued that benefits that gradually decline over the unemployment spell are likely optimal, we are not aware of research that has evaluated reforms that change the time path without also greatly increasing or reducing the generosity of the UI system.

The paper also contributes to a small literature on behavioral labor economics, including work on gift exchange between employer and employee (Akerlof, 1982, Fehr, Kirchsteiger, and Riedl, 1993 and Gneezy and List, 2006), horizontal pay equity (Kahneman, Knetsch and Thaler, 1986; Card, Mas, Moretti, and Saez, 2012), and target earnings in labor supply (starting from Camerer et al., 1997). More relatedly, within job search, DellaVigna and Paserman (2005) consider the impact of present-bias while Spinnewijn (2013) examines the role of overconfidence. We show that a reference-dependent model of job search make unique predictions which are not shared by these other models.

The paper also relates to the behavioral literature on reference dependence. Evidence of reference dependence comes from a number of settings including insurance choice (Sydnor 2010, Barseghyan, Molinari, O’Donoghue and Teitelbaum 2013), labor supply (Fehr and Goette 2007), domestic violence (Card and Dahl 2011), goal setting (Allen, Dechow, Pope and Wu n.d.), and tax elusion (Rees-Jones 2013). Across most of these settings, the reference point is the status-quo, or the forward-looking expectation (as in Koszegi and Rabin, 2006). In this paper, the set-up with varying payoffs allows us to estimate the speed of updating of a backward-looking reference point as in Bowman, Minehart, and Rabin (1999); the only other example we are aware of is (Post, Van den Assem, Baltussen and Thaler 2008). This paper is also part of a growing literature on structural behavioral economics which aims to identify the underlying behavioral parameters (Laibson, Repetto and Tobacman 2007, Conlin,

The papers proceeds as follows. In Section 2, we present a simple model of job search and reference dependence. In Section 3 we present the institutional details and the data for the Hungary unemployment insurance reform, which we evaluate in Section 4. In Section 5 we present the structural estimates, and we conclude in Section 6.

2 Model

In this section we present a simple discrete-time model of job search with reference dependent preferences. We build on the job search intensity model presented in Card, Chetty, and Weber 2007a by adding a reference dependent utility function in consumption with backward looking reference point.

Each period a job seeker decides on how much effort \(s_t \in [0, 1] \) to put into searching for a job, which represents the probability of receiving a job offer at the end of period \(t \) and thus of being employed in period \(t + 1 \). Search costs are given by the function \(c(s_t) \) each period and we assume that the twice continuously differentiable function \(c(s) \) is increasing and convex, with \(c(0) = 0 \) and \(c'(0) = 0 \).

The individuals receive unemployment benefits \(b_t \) if unemployed at period \(t \), and they consume their income. Hence, the utility from consumption in period \(t \) for an unemployed person is \(v(b_t) \). The novel aspect is the fact that the reference-dependent individual has, in addition to consumption utility \(v(b_t) \), also gain-loss utility. Following the functional form of Koszegi and Rabin (2006), flow utility in each period is

\[
\begin{align*}
 u(b_t | r_t) &= v(b_t) + \eta [v(b_t) - v(r_t)] \\
 &= v(b_t) + \eta \lambda [v(b_t) - v(r_t)]
\end{align*}
\]

if \(b_t \geq r_t \)

(1)

where \(r_t \) denotes the reference point for consumption in period \(t \). The utility consists of the consumption utility \(v(b_t) \) and in addition of the gain-loss utility \(v(b_t) - v(r_t) \). Whenever the consumption is on the gain side relative to the reference point \((b_t \geq r_t) \), the individual derives gain utility \(v(b_t) - v(r_t) > 0 \), which receives weight \(\eta \). Whenever the consumption is on the loss side relative to the reference point \((b_t < r_t) \), the individual derives loss utility \(v(b_t) - v(r_t) < 0 \), with weight \(\lambda \eta \). The parameter \(\lambda \geq 1 \) captures the loss aversion, the fact that the marginal utility of consumption is higher on the loss side than on the gain side. This reference-dependent utility function builds on prospect theory (Kahneman and Tversky, 1979) without, for simplicity, modelling either diminishing sensitivity or probability weighting. Notice also that the standard model is embedded as the special case for \(\eta = 0 \).

The second key set of assumptions is the determination of the reference point \(r_t \). Unlike
in the recent literature on forward-looking reference points (Koszegi and Rabin, 2006 and 2007), but in the spirit of the literature on habit formation and of the older tradition on backward-looking reference points (Minehart, Bowman, and Rabin, 2001), we assume that the reference-point is a weighted average of past income over the \(N \) preceding periods:\footnote{In the estimation below we also consider alternative ways of reference point formation, such as an AR(1) process.}

\[
rt = \frac{1}{N} \sum_{k=t-N}^{t-1} y_k.
\]

To gain perspective on the impact of reference dependence on the marginal utility of consumption, consider the impact on utility of a small, permanent cut in benefits from \(b \) to \(b - \Delta b < b \), taking place in period \(T \). Assume that for the previous \(T \) periods, with \(T > N \), benefits were constant, so that the reference point \(r_T \) equals \(b \) and utility in period \(T - 1 \) equals \(v(b) \) (there is no gain-loss utility in steady-state). Then in period \(T \) the utility changes to \(v(b - \Delta b) + \eta \lambda [v(b - \Delta b) - v(b)] \). The short-term change in utility \(u(b_t|r_t) \) is, up to a linear approximation, equal to \((1 + \eta \lambda) \Delta bv'(b)\). Over time, however, the reference point adjusts to ultimately equal \(b - \Delta b \) so that the utility after \(N \) periods equals \(v(b - \Delta b) \). Hence, the long-term change in utility equals just \(\Delta bv'(b) \), while \(\eta \lambda \) captures the additional short-term utility response to an income loss.

The reference point at time \(t \) depends on income in the past \(N \) period. For unemployed workers the reference point in period \(t \) is given by the benefit path (and by the pre-unemployment wage). For workers who have found a job, the reference point depends on how many periods prior to \(t \) a worker found a job. To make this distinction explicit, let’s denote \(r_t \) the reference point in period \(t \) if the individual was unemployed (at least) until period \(t - 1 \), and let’s denote \(r_{t|j} \) the reference point of an individual in period \(t \) who started a job in period \(j \). Note that \(r_{t|t} = r_t \).

Turning to the job search decision, each period when unemployed, the worker chooses the search effort \(s_t \) to maximize the following value function:

\[
V_t^U = \max_{s_t \in [0,1]} \left[u(b_t|r_t) - c(s_t) + \delta \left[s_t V_{t+1|t+1}^E + (1 - s_t) V_{t+1}^U \right] \right]
\]

(2)

where \(V_{t+1}^U \) is the continuation payoff from being unemployed in period \(t + 1 \) and \(V_{t+1|t+1}^E \) is the continuation payoff of being employed in period \(t + 1 \) conditional on finding a job that starts in period \(t + 1 \). Writing the value function of employment conditional on the time when a person starts a job becomes relevant below, since the time when a person finds a job will determine the path of the reference point in future periods.

We assume that individuals hold a job with wage \(w \) forever after finding a job, with the
wage \(w \) larger than the benefits \(b_t \) at any period. As such, \(V_{t+1}^E \) is given by

\[
V_{t+1|t+1}^E = \frac{v(w)}{1 - \delta} + \eta \sum_{i=1}^{N} \delta^i \left[v(w) - v\left(r_{t+i}^E\right) \right].
\]

The first term in \(V_{t+1|t+1}^E \) is the standard term from receiving consumption utility of \(v(w) \) forever, while the second term consists of the gain term, where the reference point will adjust over time. Notice that the second term disappears after \(N \) periods, since by then the reference point \(r_{t+N+1|t+1} = w \). We solve the model by backward-induction starting from a point \(\bar{T} \) after which we assume that search effort is stationary (at least \(N \) periods after an individual finds a job).

Equation (2) for the case of interior solution implies that the optimal search \(s_t \) satisfies

\[
c'(s_t^*) = \delta \left[V_{t+1|t+1}^E - V_{t+1}^U \right].
\]

(3)

Given our assumptions above we can define the inverse of the first derivative of the cost function: \(C(.) = c'^{-1}(.) \), so that we can solve for \(s_t^* \):

\[
s_t^* = C \left(\delta \left[V_{t+1|t+1}^E - V_{t+1}^U \right] \right)
\]

(4)

To highlight the predictions of the model and to contrast it with the standard model, we consider a specific reform of an unemployment insurance system that closely corresponds to our empirical setting in Hungary. Suppose the UI system has two possible levels in the UI benefit path. For the first \(T_1 \) periods benefits are paid at a level of \(b_1 \), then they change to a second level \(b_2 \) until \(T \) and afterwards may drop to a final lower second tier (such as social assistance) with benefits \(\bar{b} \). If there is no step-down in this UI system, this would be captured by \(b_{\text{constant}} = b_1 = b_2 \), which corresponds to the UI system in many countries including the US, and is illustrated as the blue solid line in Figure 1 (a).

Now consider a reform that front-loads the UI benefit path, by raising benefits \(b_1 \) in the first \(T_1 \) periods and reducing them in the periods \(T_1 \) to \(T \), as indicated by the red dashed line in Figure 1 (a). Also assume that the total amounts of benefits paid under the old and the new regime for an unemployed individual who is unemployed for at least \(T \) periods is identical (that is the initial increase is exactly offset by the drop between \(T_1 \) and \(T \)) such that:

\[
b_1 T_1 + b_2 (T - T_1) = b_{\text{constant}} T
\]

(5)

The benefit level in the second tier \(\bar{b} \) in the periods following \(T \) is unaffected. Note that if equation (5) holds, then we have \(\frac{\partial b_2}{\partial b_1} = -\frac{T_1}{T_2 - T_1} \). We compare how optimal search effort \(s_t^* \)
is affected by a marginal increase in \(b_1 \) subject to the constraint (5) in the standard and the RD model. We express the results in terms of \(\frac{ds_i^*}{db_1} = \frac{\partial s_i^*}{\partial b_1} - \frac{T_1}{T_2 - T_1} \frac{\partial s_i^*}{\partial b_2} \), where the total derivative takes the implied adjustment of \(b_2 \) into account and thus captures the full movement of the benefit path.

The following proposition states how the benefit increase will affect search effort in the periods \(t \geq T \), that is after benefits are exhausted.

Proposition 1. Consider a shift in the benefit path that front-loads the benefits.

a) In the standard model (\(\eta = 0 \)), the search effort in all periods after \(T \) is unaffected: \(\frac{ds_i^*}{db_1} = 0 \), for \(i = 0, 1, \ldots \).

b) In the reference-dependent model (\(\eta > 0 \) and \(\lambda \geq 1 \)) search effort (weakly) increases temporarily in the first \(N \) periods after \(T \), and remains constant in later periods: \(\frac{ds_i^*}{db_1} \geq 0 \), for \(i = 0, 1, \ldots N - 1 \) and \(\frac{ds_i^*}{db_1} = 0 \), for \(i = N, N + 1, \ldots \). Furthermore, if the adjustment speed \(N \) of the reference point is shorter than \(T \), then the inequality is strict: \(\frac{ds_i^*}{db_1} > 0 \), for \(i = 0, 1, \ldots N - 1 \).

The first part is straightforward from equation (4). In the standard model, the search decision depends exclusively on future benefits and wages, and the reform leaves unaffected the benefits past period \(T \).

In the reference-dependent model, instead, past benefits may affect current search effort through the reference point. Taking the derivative of equation (4) with respect to \(b_1 \) we get:

\[
\frac{ds_i^*}{db_1} = \left(\frac{dV_{t+1}^E}{db_1} - \frac{dV_{t+1}^U}{db_1} \right) \mathcal{C}' \left(\delta \left[V_{t+1}^E - V_{t+1}^U \right] \right)
\]

(6)

The second part on the right hand side \(\mathcal{C}' \left(\delta \left[V_{t+1}^E - V_{t+1}^U \right] \right) \) is always positive, so the sign of \(\frac{ds_i^*}{db_1} \) is determined by the first part. To see that the first part is also positive, notice that

\[
\frac{dV_{t+1}^E}{db_1} = -\eta \frac{dv(r_{t+1})}{db_1} + \delta \left(s_{t+1} \frac{dV_{t+2}^E}{db_1} + (1 - s_{t+1}) \frac{dV_{t+2}^U}{db_1} \right)
\]

(7)

and

\[
\frac{dV_{t+1}^U}{db_1} = -\lambda \eta \frac{dv(r_{t+1})}{db_1} + \delta \left(s_{t+1} \frac{dV_{t+2}^E}{db_1} + (1 - s_{t+1}) \frac{dV_{t+2}^U}{db_1} \right)
\]

(8)

For \(t + 2 = T + N + 1 \), i. e. a person one period before his reference point reaches the new steady state, we have that \(\frac{dV_{t+2}^E}{db_1} = \frac{dV_{t+2}^U}{db_1} = 0 \) and in that case clearly \(\frac{dV_{t+1}^E}{db_1} - \frac{dV_{t+1}^U}{db_1} = -\eta \frac{dv(r_{t+1})}{db_1} + \lambda \eta \frac{dv(r_{t+1})}{db_1} = (\lambda - 1) \eta v'(r_{t+1}) \frac{dx_{t+1}}{db_1} \leq 0 \). The intuition is simply that the change

\[6\] Note that search effort in period \(t \) is not affected by UI benefits in period \(t \), since the individual will only start a job found in period \(t \) in period \(t + 1 \). Thus search effort \(s_i \) corresponds to the exit hazard from unemployment in period \(t + 1 \): \(s_i = h_{t+1} \).
in benefits decreases the reference point in period \(t + 1 \) (whether employed or unemployed) and thus increases the utility flow. But since loss utility is larger than gain utility, the value of unemployment changes more and thus the gap between \(V_{t+1}^E \) and \(V_{t+1}^U \) decreases, thus reducing the returns to searching for a job.

For \(t + 2 < T + N + 1 \), but still \(t + 2 > T + 1 \), we also have to consider the second term on the right hand sides of equations (7) and (8). We provide a formal proof in the appendix to show that the second term in (8) is larger than the term in (7) which implies part b) in Proposition 1. The intuition is that while the part \(\frac{dV_{t+1}^E}{db_{t+1}} \) is positive (thus increasing incentives to search), the part in equation (8) is always larger due to the fact that changes in the reference point for someone who does not find a job in period \(t + 1 \) has a lower reference point in period \(t + 2 \) and the concavity of \(v(.) \) as well as the fact that any utility coming from future time spend in unemployment is lower due to \(\lambda > 1 \).

Thus in the periods after benefits are exhausted \((t > T)\), the benefit path change has starkly different effects on search effort: In the standard models, search effort will not be affected, while in the RD model search effort will decrease for the next \(N \) periods. In the periods before benefits are exhausted, the standard model predicts an increase in search effort, since the value of unemployment is decreased, while the value of employment is unaffected. In the RD model the predictions are ambiguous and depend on the exact parameters: On the one hand the increase of \(b_1 \) will tend to increase the reference point in periods that are close enough to the first benefit step that the increase in \(b_1 \) has a larger impact on the reference point than the decrease in \(b_2 \). This would tend to increase search effort in periods prior to \(T \) where \(N \) is sufficiently long and \(t \) close enough to \(T_1 \). For shorter \(N \) and \(t \) being close to \(T \), the decrease in \(b_2 \) will dominate, reducing the reference point and thus reducing search effort. In addition to the changing incentives coming from the gain-loss part of the utility function, there is also the direct part, that a decrease in benefits \(b_2 \) will reduce the utility from unemployment and thus tend to increase search effort. Which of these effects dominate in the pre-\(T \) periods depends on the exact values of the parameters.

The predictions of the standard model are highlighted in Figure 1(b). The optimal search effort will increase under both regimes up until period \(T \), and then plateau at a constant level after period \(T \), since the two regimes have identical benefits moving forward. Moreover, the hazard rate for regime 1 is lower than the one for regime 2, given that the benefits are frontloaded in regime 1, thus reducing the future value of staying unemployed and increasing the incentives to find a job.

The optimal search effort under reference-dependence is quite different and shown in (c). First, the search effort at period \(T \) is substantially higher under the first regime, since individuals experience a sharp drop in consumption and thus (for \(N < T \)) experience significant loss.
utility due to their high reference point. The difference in hazards persists but in attenuated form in the subsequent period, until it fully goes away after N periods, which is the time length after which the reference point has been full updated to the new benefit level. After this point, there is no more of a difference.

In addition, loss aversion generates a difference in hazards in anticipation of future losses. Namely, in the last few period before period T, for sufficiently large loss aversion λ, the hazard is actually higher under regime 1 compared to regime 2, despite the fact that regime 1 has more generous benefits (in sharp contrast to the standard model). This reflects the fact that the reference-dependent agents anticipate the future loss, and this anticipation is stronger under regime 1. To the extent that this force is stronger than the usual direct benefit effect, we observe the pattern in the graphs.

While we do not include savings in this model, note that if individuals could save, then the standard model would actually predict a decrease in search effort after benefits are exhausted relative to a regime without a UI benefit increase. This is because some of the additional UI benefits will be saved thus increasing the value in unemployment and reducing the pressure to find a job. Thus even savings would not alter the insight from the model, that an increase in search effort (after T) in response to an increase in b would strongly support the RD model over the standard model.

3 Data and Institutions

3.1 Unemployment Insurance in Hungary

Hungary had a generous unemployment insurance system in the period we examine. The UI insurance had a two tiered structure. In the first tier, potential duration and benefit amount depended on past UI contribution. The maximum potential duration, which was obtained after around 4 years of contribution, was 270 days, while the benefit was calculated based on the earnings in the previous year. After all the benefit had been exhausted in the first tier, “unemployment assistance” (UA) benefits could be claimed in the second tier. The benefit amount in this tier was the same for everybody, while the potential duration depended on age.

On May 30th, 2005 the Hungarian government announced a comprehensive reform of the unemployment insurance system. The main goal of the new UI regulation was to speed

7 Every worker in the formal sector must pay a UI contribution. In 2005, employers contributed 3% to the UI fund, while employees 1%. There is no experience rating of UI benefits in Hungary.

8 More specifically, potential benefit in the first tier was calculated as UI contribution days in the last 4 years divided by 5, but at most 270 days.

9 The reform was part of a wider government program (called “100 steps”). Policies related to the labor market and unemployment insurance (such as reemployment bonus and training policies) are discussed latter.
up transition from unemployment to employment. To achieve this goal, the government
to change the benefit calculations formula in the first tier, but did not alter the way potential
duration and earnings base were calculated. Before the reform, the benefit in the first tier
was constant with a replacement rate of 65% and with minimum and maximum benefit caps.
After the reform, a two-step benefit system was introduced. The length of the first step was
half of the potential duration in the first tier, and at most 91 days. In the first step, the
replacement was lowered to 60%, but both the minimum and maximum benefit caps were
increased substantially. For most UI claimants these changes meant higher benefits than
under the old schedule. On the other hand, in the second tier everybody received the new
minimum benefit amount. In practice, most UI claimants received lower benefits in this tier
than before. The benefit formula changes are summarized in Figure 2.

The most prominent change occurred for those who had 270 days eligibility (four years of
UI contributions before lay-off) and had base year earnings above the new benefit cap (that
is, they earned more than 114,000HUF ($570) per month in 2005). The old and new benefit
schedules are summarized on Figure 3 for this group. In the first tier, the potential duration is
270 days both before and after. In the old system, the benefits were constant in the first tier.
On the other hand, under the new rules, benefits increased substantially in the first 91 days,
but decreased afterwards. An important feature of the reform for this particular group is that
the benefit increase in the first 91 days is almost the same as the benefit decrease between 90
and 270 days. Therefore, the expected benefit pay-out for individuals who were unemployed
for 270 days is very similar under the two benefit schedules.

Even though the main element of the reform was the new benefit formula, there were
other changes that occurred at the same time. Most notably, a reemployment bonus scheme
was introduced as well. The bonus amount was 50% of the remaining total first tier benefits.
However, claiming the bonus was not without costs. First, if the bonus was claimed, then the
entitlement for the unused benefit days was nulled. This could be very costly for risk-averse
agents or for those who could only find an insecure job. Second, the bonus could only be
claimed after the date of first tier benefit exhaustion. In practice, this meant substantial
hussle costs, since UI claimants had to show up one more time in the local UI office and fill
out the paper work. Given the presence of these costs, it is not surprising that the take-up
rate of reemployment bonus was only 6%. In our main analysis, we focus on the pattern of
the hazard that should not be affected by the presence of the reemployment bonus. Moreover,
as a robustness check we show that the pattern of the hazard and our results are not sensitive
to dropping the reemployment bonus users from our sample.\(^\text{10}\)

\(^\text{10}\)Lindner and Reizer (2014) investigate the reemployment bonus in detail and show that it does not affect
the shape of the hazard function.
In addition to the introduction of the reemployment bonus, there were other minor changes that are relevant for our analysis. First, those who claimed UI benefit before February 5th, 2005 faced a shorter11 but somewhat higher, benefit in the second tier12. To avoid the complications that this change caused we only focus on those who claimed their benefits after February 5th, 2005. Second, there were some minor changes in financing training programs13. However, participation in training programs was very low (less than 5\%) in our sample and our results are robust to dropping these claimants.

Those who exhausted benefits in both tiers and were still unemployed could claim means tested social assistance. The duration of social assistance is indeterminate, while the amount depends on family size, family income, and wealth. In most cases social assistance benefits are lower than the second tier UI benefit level.14

3.2 Data

We use administrative data15 that contains information on the social security contributions for roughly 4 million individuals between January 2002 and December 2008. Every Hungarian citizen who was older than 14 and younger than 75 in 2002 and who was born on even days of months was selected into our sample. Therefore, the sample represents roughly half of the Hungarian population. Information on UI claims from February 2004 to December 2008 were merged to the data. We also observe basic information used by the National Employment Service, in particular, the starting and ending date of the UI benefit spells and the earnings base that is used for benefit calculations.

In this paper we only focus on UI claimants who are eligible for the maximum potential duration (270 days) in the first tier. The reason for this is that we would like to avoid the complications caused by varying potential duration. In addition to that we restrict our

11Before the reform, the potential duration in the second tier was 270 days above age 45 and 180 days below 45. Those who claimed UI after February 5th, 2005 were eligible for 180 days above age 50 and 90 days below 50 in the second tier.

12The change in the duration and benefit level in the second tier was introduced at November 1st, 2005 at the same time as other changes. However, it affected everybody who claimed second tier (UA) benefits after November 1st, 2005. A UI claimant who claimed her benefits after February 5th, 2005 and had 270 days potential eligibility, could only claim second tier benefits (UA) after November 1st, 2005. Therefore, claimants between February 5th, 2005 and November 1st, 2005 are under the old benefit system in the first tier, but face with the same second tier (UA) insurance scheme, see Figure 4.

13Unemployed participating in training programs received the so-called income substituting benefit. Before November 1st, 2005 this amount was 22,200HUF ($111) or 44,400HUF ($222), depending on household characteristics and type of training. This benefit was payed in excess of the UI. After November 1st, the benefit was 34,200HUF ($171) for everybody. However, the UI benefit was suspended during training. Although we can only observe training participation after November 1st, 2005 aggregate data show that the probability of participation in training programs remained constant throughout this period (Frey 2009).

14For large families, social assistance can be more generous than UI. However, social assistance cannot be claimed before all other benefits have been exhausted in the UI system.

15The dataset is requested and cleaned by the Institute of Economics - Hungarian Academy of Sciences.
sample to those who are older than 25 years and younger than 49 years. We drop the older population, since specific rules were applied close to retirement. Moreover, we identify as our main sample UI claimants with high earnings base, since our goal is to explore the variation showed in Figure 3. To construct a consistent sample over time, we focus on the unemployed whose earnings base was above the 70th percentile of the earnings base distribution of the UI claimants in the given year. In 2005, a UI claimant at the 70th percentile earned 100,800 HUF ($504).

3.3 Descriptives

Our empirical analysis focuses on how search behavior of UI claimants was affected by the reform in November 2005. We construct two comparison groups of workers who entered UI just before or just after the reform, since the claiming date determined under which regime an individual was. Due to the change in unemployment assistance in February 2005, we use all UI claimants between February 5th, 2005 and October 15, 2005 (to avoid getting too close to the reform) as our pre-reform group. In order to get a comparable post-reform group that shows similar seasonal patterns, we take UI entrants in the same date range (February 5 to October 15) in 2006 as our comparison group. Figure 4 shows the timing of the two comparison groups, as well as highlights the range for which our data is available. For robustness checks, we will later show results using data in the earlier and later ranges as well. Table 1 shows basic descriptives for the two groups. The basic demographic characteristics are almost unchanged. Age at time of claiming, education and log earnings in the years 2002 - 2004 are very similar. We also find that the waiting period (the number of days between job loss and the time of claiming UI benefits) is almost identical across the two groups, indicating that people towards the end of our before sample were not trying to delay UI claiming dates in order to become eligible to the new regime.

As we mentioned before, after 2005 the Hungarian government also introduced a reemployment bonus scheme. The take-up rates are quite low in the post period (and by default zero in the pre period). Below we present careful robustness checks to address the possibility that this bonus may have affected our results.

16 Our results are robust to alternative earnings thresholds over time. For example, we estimated our main specifications for those whose (real) earnings base was above 114,000 HUF ($570) and obtained virtually the same results.

17 Appendix Figure A-1 shows the unemployment rate and GDP growth rate around the two periods in Hungary. The unemployment rate was quite stable at around 7.5 percent during and after the two sample periods. GDP growth was also stable during the sample periods, only slowing down at the beginning of 2007. Below we show extensive robustness checks, showing that our results are not driven by changes in the economic environment that occurred later and that the shape of the hazard rates are in fact very stable over time except for the exact point when the UI policy changes.
4 Reduced Form Results

4.1 Estimating Hazard Plots

In this section, we evaluate the impact of the reform on the exit rates from unemployment. We focus in particular on the hazard rates around the exhaustion point at 270 days, which is where the models make the most distinct predictions. We estimate the hazard rates with a linear probability model separately for each 15 day period, indexed by t, after entering unemployment insurance:

$$I(t^*_i = t | t^*_i \geq t) = \beta_{0,t} + \beta_{1,t} POST_i + X_i \gamma + \epsilon_{it},$$ \hspace{1cm} (9)

where i indexes individuals and t^*_i represents the duration of unemployment of individual i. The left hand side is an indicator for individual i finding a job in period t, conditional on still being unemployed at the beginning of the period. The variable $POST_i$ is an indicator for individual i claiming benefits in the post-reform period, while X_i is a matrix of control variables. The equation is estimated separately for each period t on the sample of individuals who are still unemployed at time t (that is conditional on $t^*_i \geq t$). The estimates for $\beta_{0,t}$ are estimates for the hazard function in the pre-period, while the estimates for $\beta_{1,t}$ represent the shift of the hazard function between the before and after period. In our baseline estimates we do not control for any observables X_i, and instead show results controlling for X_i as additional specifications.

Note that these hazard functions should not be viewed as consistent estimates on the individual level, but rather as estimates of the average hazard function in the population before and after the reform. While the natural experiment, assuming the CIA holds, identifies the causal effect of the reform on the average hazard function in the population, the shape of this average hazard function is potentially affected by either behavioral responses (true duration dependence) or by changes in selection patterns that are due to the reform. While we address differential selection in our reduced form results section, by comparing how observables vary throughout the unemployment spell, as well as by comparing the estimated hazard function controlling and not controlling for observables, an important aspect of our structural estimation below will be to explicitly model the potential of unobserved heterogeneity affecting these hazard functions.

4.2 Main Result

Figure 5(a) shows the estimates of equation (9) for each t with no control variable. The blue line represents the coefficient estimates of $\beta_{0,t}$- the estimated hazard function in the before period - while the red line represents the estimates $\beta_{0,t} + \beta_{1,t}$ - the estimated after period
hazard. Vertical lines between the two periods indicate that the difference between the two lines is statistically significant at the conventional 5% level.

The exit hazard from unemployment in the pre-reform period shows a familiar pattern for a one-step unemployment system. The exit hazard falls in the first months after entering UI, and then it increases as it approaches the exhaustion point of UI benefits (at 270 days). After this exhaustion point, it falls and spikes again as people exhaust the second tier benefits, unemployment assistance, at 360 days. The hazard rate then decreases monotonically after this point, as unemployed people are only eligible for welfare programs.

The exit hazard changes substantially after the introduction of a two-step unemployment insurance system. The hazard rate increases at 90 days, at the end of the higher unemployment insurance benefit, and remains elevated compared to the pre-reform period for the following 2.5 months. By 180 days, the pre- and post-reform hazards have converged back, and both hazards increase at the exhaustion of the UI benefits at 270 days. Importantly, though, the post-reform hazard increases significantly less, and the pre-reform hazard remains significantly higher for the 2 months following the UI exhaustion. Finally, by 360 days, the end of the unemployment assistance, the two hazards have once again converged back together.

The most striking difference occurs around day 270, when in the pre-reform period the exit hazard remains significantly higher after the UI exhaustion point (270 days) relative to the after period. As we discussed above, this difference in hazards is hard to reconcile with the standard model: from day 270 onwards, the benefit levels are identical in the pre- and post-period, and in addition the total amount of benefits received up to day 270 is also almost identical. Hence, as we discussed in Section 3, in the standard model we would expect similar hazards (even with heterogeneity, as we show below).

The difference in hazards instead fits nicely with the reference-dependent model: the workers in the pre-reform period experience a larger drop-off in benefits around day 270, inducing a spike in loss utility and thus an increase in the value of search. The persistence for 2-3 months of the higher hazard suggests that it takes a substantial amount of time for the reference point to adjust to the new level. Furthermore, the increase in hazard in the pre-period happens already in anticipation of benefit expiration at day 270, consistent with the reference-dependent model.

While we focus mainly on the hazard rate around day 270 because it leads to the most distinct predictions, the observed patterns around day 90 are also consistent with reference dependence. The spike in the hazard at 90 days in the post-period, corresponding to the first step down in benefits, disappears after 3-4 months, consistent once again with loss utility relative to slowly-adjusting reference points. However, the spike itself in this period could also be explained by the standard model in the presence of unobserved heterogeneity, as we show
In order to see how the reform affected the total amount spent in unemployment in the two groups, Figure 5(b) shows the estimated survival function for the two groups. We obtain these estimates using a variant of equation (9), where we estimate the equation again pointwise for all t but including the whole sample and taking $P(t^*_i \geq t)$ as the outcome variable. This provides natural non-parametric estimates of the survival function, as well as whether differences between the two are pointwise significant. The survival functions diverge after 90 days, with lower survival probabilities in the after group than in the before group. This difference persists until around 300 days, after which the two lines converge and the difference disappears. Since the expected duration in unemployment is simply the integral over the survival function from 0 onwards, the expected unemployment duration is significantly reduced in the after period. It is striking that even though the reform made the UI system more generous on average (since short term unemployed received more benefits, while the long-term unemployed received about the same overall), the expected duration actually decreased.

4.3 Robustness Checks

The results presented so far do not control for demographic characteristics. Even though the differences in demographics between the pre- and the post- period are quite small (Table 1), they could potentially explain differences in the hazard patterns over time if the demographic impacts on the hazard rates are large. Thus, we re-estimate equation (9) controlling for a rich set of observable characteristics, where we allow these characteristics to have arbitrary effects on the hazard function at each point, the only restriction being that the effect is the same in the before and after period. As Figure 6(a) shows, controlling for observables has virtually no effect on the differences between the two hazard rates, implying that they cannot explain our findings. Alternatively we also used propensity score reweighting to estimate the hazards in the pre- and post-period, holding the observables constant over time and obtained almost identical results (not shown).

A separate concern regards the introduction of the reemployment bonus in November 1st, 2005. While the take-up rate of the bonus was just 6% in our sample, it is likely to affect the hazard rate in the post-reform period, especially in the first 90 days. One way to check for potential impacts of this is to drop all individuals that received a reemployment bonus and estimate our baseline specification on this restricted sample. Figure 6(b) shows that the results are virtually unchanged.

In order to assure that the differences in the hazard rates are in fact due to the reform in the UI system and not simply the result of some general trend, we exploit the fact that we have additional data from 2004 and after 2006. First we estimated two 'placebo' tests
for whether there are differences in the year 2 years before the reform and the year 1 year before the reform, using the same estimation strategy as before. We report these results in Appendix Figure A-2 (a), revealing that the hazard rates are virtually unchanged between 2004 and 2005. There is a small difference right after the 270 line, which is expected due to the reduction in unemployment assistance in February 2005, leading to a slight increase in the hazard at this point in 2005. Similarly Appendix Figure A-2 (b) shows that there are virtually no differences between the hazards 1 and 2 years after the reform, again indicating that the differences between our before and after period line up nicely with the reform and thus are likely due to the reform.

We explore the timing further by plotting time-series graphs of the exit hazards over specific intervals. Figure 7 (a) shows the evolution over time of the exit hazard between 30 and 90 days (red line) and between 90 and 150 days (black line). Each dot indicates the average hazard for each 3-month period between 2004 and 2007, with quarter 1 indicating the first 3-month period after the reform. Prior to the reform, the hazard at 90-150 days is smaller than the hazard at 30-90 days, consistent with the patterns in Figure 5. Subsequent to the reform introducing a step down of benefits after 90 days, the pattern abruptly changes. Already in the first quarter after the reform, the hazard at 90-150 days increases sizeably, becoming similar to the hazard at 30-90 days, a pattern that remains largely similar over the next 6 quarters. The figure provides little evidence of previous trends, suggesting that the changes in hazards are indeed a causal effect of the reform.

Figure 7 (b) provides parallel evidence for the hazard at 210-270 days versus at 270-330 days. In the quarters pre-reform, the hazard at 270-330 days is significantly higher than the hazard at 210-270 days, a pattern that changes abruptly with the first quarter following the reform. The time-series plots again indicate a change that is coincidental with the reform and not due underlying trends or changes in the macroeconomic environment.

5 Structural Estimation

Set-up. We use the model of Section 2, imposing four additional assumptions, some of which we relax later. First, we assume that the search cost function has a power form: \(c(s) = ks^{1+\gamma}/(1 + \gamma) \). This form implies that the parameter \(\gamma \) is the inverse of the elasticity of search effort with respect to the net value of employment. To see this, recall that the first-order condition of search effort (equation 3) is \(c'(s^*) = v \), where we denote with \(v \) the net value of employment (that is, the right-hand-side of equation 3)). Given the parametric assumption, this yields \(s^* = (v/k)^{1/\gamma} \), and the elasticity of \(s^* \) with respect to \(v \) is \(\eta_{s,v} = (ds/dv)/v/s = 1/\gamma \).

Second, we assume for most of the estimates a log utility function, \(v(b) = \ln(b) \), but we also generalize to a power utility function, \(v(b) = b^{1+\rho}/(1 + \rho) \) which admits log utility as a
special limit case, as well as to a linear utility function. Third, we assume that reemployment wages are constant over the UI spell and they are equal to past wages. In our main estimation we set past wages (and so reemployment wages) equal to the median earnings in our sample, which is 135,000 HUF ($675), but explore alternative assumptions below.

Fourth, we allow for a three-point heterogeneity among the unemployed workers in the cost of search. Thus, we estimate five parameters: three levels of cost of search \(k_{\text{high}}, k_{\text{med}}, \) and \(k_{\text{low}} \), with the assumption \(k_{\text{high}} \geq k_{\text{med}} \geq k_{\text{low}} \), as well as the probability at the start of the unemployment spell of low-cost types, \(p_{\text{low}} \), and the probability of the medium-cost types, \(p_{\text{med}} \).

The vector of parameters \(\xi \) that we estimate for the standard model are: (i) the three levels of search cost \(k_{\text{high}}, k_{\text{med}}, \) and \(k_{\text{low}} \), and the two probability weights \(p_{\text{low}} \) and \(p_{\text{med}} \); (ii) the search cost curvature \(\gamma \). For the reference-dependent model, we estimate in addition: (iii) the loss aversion parameter \(\lambda \); and (iv) the number of (15-day) periods \(N \) over which the backward-looking reference point is formed. Notice that the weight on the gain-loss utility \(\eta \) is set to 1 rather than being estimated; thus, the loss-aversion parameter \(\lambda \) can be interpreted also as the overall weight on the losses. The reason for this assumption is that over the course of the unemployment spell the individual is always on the loss side since the benefits are always (weakly) lower than the reference point. Hence, it is difficult to estimate a separate weight on gain utility and loss utility

Estimation. To estimate the model, we use a minimum-distance estimator. Denote by \(m(\xi) \) the vector of moments predicted by the theory as a function of the parameters \(\xi \), and by \(\hat{m} \) the vector of observed moments. The minimum-distance estimator chooses the parameters \(\hat{\xi} \) that minimize the distance \((m(\xi) - \hat{m})'W(m(\xi) - \hat{m}) \), where \(W \) is a weighting matrix. As a weighting matrix, we use the diagonal of the inverse of the variance-covariance matrix. Hence, the estimator minimizes the sum of squared distances, weighted by the inverse variance of each moment. To calculate the theoretical moments, we use backward induction. First we compute numerically the steady state search and steady state value of being unemployed using a hybrid bisection-quadratic interpolation method, pre-implemented in Matlab as the fzero routine. Then going backward we analytically calculate the searching effort and the value of being unemployed in each period.

Under standard conditions, the minimum-distance estimator using weighting matrix \(W \) achieves asymptotic normality, with estimated variance \((\hat{G}'W\hat{G})^{-1}(\hat{G}'W\hat{A}W\hat{G}) (\hat{G}'W\hat{G})^{-1}/N \), where \(\hat{G} \equiv N^{-1} \sum_{i=1}^{N} \nabla_{\xi}m_i(\hat{\xi}) \) and \(\hat{A} \equiv \text{Var}[m(\hat{\xi})] \) (Wooldridge 2010). We calculate \(\nabla_{\xi}m(\hat{\xi}) \)

\[18\text{In the estimations tables we report the speed of adjustment in days, which is just } N*15.\]

\[19\text{In principle, the weight on gain utility } \eta \text{ could be separately identified since gain utility affects the utility of reemployment, but the reemployment utility does not allow for precise identification of } \eta, \text{ as we show in robustness checks below.}\]

\[20\text{As robustness check below, we alternatively use the identity matrix as a weighting matrix.}\]
numerically in Matlab using an adaptive finite difference algorithm.

Moments. As moments \(m(\xi) \) we use the 15-day hazard rates from day 15 to day 540. We include in the estimation the respective moments from both the pre-reform and post-reform period leading us a total of 35*2=70 moments. We do not use the hazard from the first 15 day period, since it would require modelling search on the job.

Identification. While the parameters are identified jointly, it is possible to address the main sources of identification of individual parameters. The cost of effort parameters \(k_j \) are identified from both the level of search intensity and the path of job search over time. This is clearest in the standard model, where the heterogeneity in the parameters is needed, for example, to explain the decay in the hazard after day 360, when benefits remain constant and thus, in absence of heterogeneity, the hazard would be constant in the standard model (but not in the reference-dependent model). The search cost curvature parameter, \(\gamma \), is identified by the responsiveness of the hazard rate to changes in earnings since \(1/\gamma \) is the elasticity of search effort with respect to the (net) value of finding a job. Once again, this is clearest in the standard case. The increases in hazard once the benefits decrease identify the elasticity, and as such the curvature parameter.

Turning to the reference-dependence parameters, for a given value of \(\eta \) (fixed to 1 in the benchmark specification), the parameter \(\lambda \) denotes the extent of the loss utility. A major component to identification for this parameter is the extent to which the hazard for the pre-group is higher both before and after day 270, in response to a larger loss. Remember that instead the standard model has essentially identical hazards from day 270 onwards. The loss parameter is, of course, also identified by the response to other changes in the benefits, such as at 90 days in the post-period. The parameter \(N \) is identified by the speed with which the losses are reabsorbed into the reference point. The main source of identification is the fact that the hazard is higher in the pre-period after day 270, but it converges again after 3-4 months. Similarly, the speed of convergence of the hazard after day 90 contributes, similarly suggesting several months of adjustment.

Estimates. We first present report the benchmark estimates, under the assumption that all unemployed workers are eligible for welfare payments following the end of the unemployment insurance period (after 360 days). Figure 8 (a) presents the fit for the standard model with 3-type heterogeneity. The model fits quite well the surge in hazard around day 90 in the post-period, and the decreasing path of the hazard in the first 200 days. The fit is also reasonably good for the period from day 400 on. However, the fit between days 250 and 400 is poor. As discussed above, the standard model predicts that the hazard rates for the pre- and post-period should be almost exactly the same after day 270. As such, the model misses both the sharp difference in hazard between day 260 and day 360, as well as the spikes at
both 260 and 360 days.

In Column (1) of Table 2 we present the point estimates. The estimates for k indicate substantial heterogeneity, with k varying from the high-cost type at $\hat{k}_{high} = 235$ to the low cost type at $\hat{k}_{low} = 91$. The estimated ex-ante share of the high-cost type is very small, at $1 - .458 - .538 = .004$, ensuring that even after 300 days there is enough heterogeneity in the population left to reproduce the declining pattern of the hazard for long durations (400 days+). The estimate of the cost elasticity $\hat{\gamma} = .11$ indicates a high elasticity of search effort to incentives, needed in order to fit the large increase at 90 days in response to the different benefit levels. We also report the standard goodness of fit (GOF) measure $(m(\xi) - \hat{m})'W(m(\xi) - \hat{m})$, which allows to compare the model fit across different specifications.

In comparison, Figure 8 (b) displays the fit of the reference-dependent model with three types (and thus two more parameters compared to the standard model). The fit in the first 250 days is very good, though it was quite good also for the standard model. But, as anticipated, the model does much better for longer durations, when the standard model fits poorly. In particular, the model fits better the surge in the hazard rate in the pre-period in anticipation of the benefit cut after 270 days (which is larger in the pre period than in the post period), as well as the elevated level for the following three months, compared to the pre-period. Then the model tracks quite well the period following the exhaustion of unemployment assistance (after 360 days).

The fit of the reference-dependent model, while clearly superior to the standard model, is certainly not perfect. The most striking aspect of the data which the model does not capture is the very large spike on day 270 for the pre-period; storable offers may play a role in this case. In addition, the reference-dependent model under-fits the difference in hazards between the pre- and post-period after day 270.

Column (2) presents the point estimates. This model, which has two extra parameters, has a substantially better fit (GOF of 172 versus 243). The reference-dependence parameters are quite precisely estimated. The weight on loss utility is estimated at $\hat{\lambda} = 1.7$ (s.e. .2), indicating a substantial role for gain-loss utility. The estimate for the adjustment speed of the reference point N indicates a long duration of adjustment, $\hat{N} = 255$ (s.e. 34) days. The slow adjustment of the reference point is consistent with the duration of a few months before the spikes in hazard taper down, both after the benefit drop at 90 days in the post period, and after the benefit drop at 270 days. The estimates of the auxiliary parameters – the cost levels and the curvature of the cost of search function – are relatively comparable to the ones for the standard model.

A fair objection to the better fit of the reference-dependent model is that it has two extra parameters. Thus, in Column (3) we show the fit of the reference dependent model with
no heterogeneity in costs, and thus only 4 parameters compared to 6 parameters for the standard model. Interestingly, this bare-bones model fits the data better than the standard model (goodness of fit of 217.6 compared to 243.1). As Figure 9 (a) shows, the qualitative fit is almost as good in this model as in the reference-dependent models with unobserved heterogeneity.

Appendix Figures A-6 and A-7 show some of the key model components for the benchmark standard estimates (Column (1) of Table 2) and the benchmark reference-dependent model (Column (2) of Table 2). Panels a and b of Figure A-6 display the flow utility for unemployed workers. In the standard model (panel a), it follows the step down in the benefits, with the size of the later steps accentuated by the curvature of the utility function. In the reference-dependent model (panel b), the flow utility captures also the intensity of the loss relative to the reference point. In the pre-period (dotted blue line), for example, the flow utility of unemployment is particularly low at the beginning given the large loss relative to the pre-unemployment wage (which is the reference point then), and then it increases all the way to day 270 despite constant benefits because of adaptation in the reference point. Panels c and d show the value of unemployment for the low-cost type. In the standard model, the value of unemployment is always decreasing given that benefits never increase over time. In the reference-dependent case, instead, the value of unemployment actually increases most of the time reflecting the importance of reference-point adaptation. Panels a and b of Appendix Figure A-7 show that the value of employment is constant in the standard case, but increasing in the reference-dependent case. The increase occurs because over time the reference point declines and hence obtaining a job becomes more attractive because of the gain utility from finding a job. This increase in the value of employment is monotonic and nearly linear, unlike the pattern for the value of unemployment, and hence does not contribute much to the explanation of the patterns in the hazard. Finally, Panel c shows the path for the reference point.

In Columns (4)-(6) of Table 2 and corresponding Figures 8 (c) and 8 (d) we consider the parallel results for an alternative benchmark. Given that take-up of welfare is low in the data, we assume that workers are not eligible for welfare, and allow instead for home production of consumption (also capturing spousal earnings), which enters the consumption function. The alternative assumptions improve somewhat the fit of the reference-dependent model, allowing it to fit better the increase in take-up at 360 days (Figure 8(d)), while the fit of the standard model is slightly worse. In the rest of the paper, we present results for the first benchmark which, if anything, favors the standard model.

Alternative Reference-Dependent Models. In Table 3 we consider variants of the benchmark reference-dependent model (Column (2) in Table 2), reproduced in Column (1).
First, we explore an alternative updating of the reference point. Instead of defining the reference point as the average of past income over the N preceding periods, we assume the reference point follows an AR(1) process:

$$r_t = \rho r_{t-1} + (1 - \rho)b_t = (1 - \rho) \sum_{i=1}^{\infty} \rho^i b_{t-i}$$

This updating rule has longer “memory” and adjusts more smoothly than the benchmark reference point, with the speed of adjustment captured by ρ. Column (2) of Table [3] shows the estimated speed of adjustment $\rho = 0.83$, which implies slower adjustment (half-life is 56.5 days) than in the benchmark case. The estimates for the other parameters such as λ and γ are close to the benchmark estimates. The goodness of fit with AR(1) updating, though, (188.4) is not quite as good as the benchmark estimates (172.6). Figure [9] (d) highlights that the AR(1) model does not fit quite as well the moments between 270 and 360 days.

Next, we disentangle the role played by gain and loss utility in the estimates. So far, we have arbitrarily set the gain utility parameter, η, to 1, thus fixing the gain utility at a set level, while estimating the weight on loss utility, $\eta \lambda$. In Columns (3) and (4) we examine the role of gain and loss utility by including only one at a time in the model. In Column (3) we assume no gain utility when workers get a job, but still estimate the loss utility weight $\eta \lambda$. The fit of the model is almost as good as the standard one, and the estimated speed of updating of the reference point is nearly the same (though not the estimated loss aversion). In Column (4), we do the complementary exercise of not allowing for loss utility while unemployed, while modelling gain utility. This model does much worse and is unable to reproduce the difference in hazards past 270 days. This indicates the key role played by loss utility.

We present a parallel take on this result in the next three columns. Columns (5) and (6) report the estimates setting, respectively, a value of η of 0.2 and of 5. Interestingly, as the (assumed) weight on gain utility η increases, the estimated λ decreases, holding the product $\eta \lambda$, which is the weight on loss utility, at comparable (though not constant) levels. The goodness of fit is slightly better for $\eta = 5$ (168) than for the benchmark case (172.6) or for $\eta = 0.2$ (175), but, as it is shown in Figure [9] (b) and in Figure [9] (c), the predicted hazards are virtually the same as in the benchmark case. Along similar lines, in Column (7) we fix the loss aversion estimate to 1 and obtain comparable estimates.

Finally, in Column (8) we consider a model related to the reference-dependent one: a habit-formation model a la (Campbell and Cochrane 1999). We replace our reference dependent utility function (defined in Equation (1)) with the following one:

\[^{21}\text{When we implement this estimate we assume that the memory of the AR(1) update goes back to 1050 days (or 70 15-day period).}\]
\[v(b_t, r_t) = \log(b_t - zr_t), \]

where \(z \) captures the responsiveness of the utility function to changes in the habit stock, while \(r_t \) is calculated the same way as before, but reinterpreted as a measure of habit stock. This model, which embeds the standard model for \(z = 0 \), is similar to the reference-dependent model in that it induces a temporarily high marginal utility of income following a benefit cut. The habit-formation model indeed fits the data better than the standard model (204.6 in the habit model vs 243.1 in the standard model), although its performance lags behind the reference dependence model (172.6), as also Figure 9(d) shows.

Robustness. In Table 4 we consider the robustness of the benchmark estimates of the standard model and of the reference-dependent model, first to alternative specifications of the utility function (Columns (1) to (5)) and then to alternative estimation methods (Columns (6) to (9)). We consider alternative curvatures of the utility function: linear utility (Column (1)), a CRRA utility function with relative risk aversion parameter of 0.5 (Column (2)), and CRRA utility function with relative risk aversion parameter of 2 (Column (3)). The best performing specification for the standard model is the linear utility in Column (1), but the improvement compared to our benchmark specification is negligible. For the reference-dependent model the goodness of fit of these alternative models is slightly inferior compared to our benchmark specification, but the difference in fit is small and the estimates for key reference-dependence parameters, \(\lambda \) and \(N \), are similar, suggesting that the curvature of the utility function is not crucial in explaining the observed hazard rates.

Then, in Column (4) we modify the cost of effort function by allowing for a linear time trend in the baseline cost factor \(k \). This allows for skill depreciation or conversely learning to search better. This additional parameter leaves the fit of the reference-dependent model unaffected, but it improves to some extent the fit of the standard model, though the fit after day 270 remains essentially the same.

For the final utility parameter, we consider in Column (5) the discount factor \(\delta \). The optimal estimate suggests a high rate of impatience, but the quality of the fit does not vary substantially, suggesting that time discounting does not play a critical role in the estimates.

In the next specifications we consider variants to the estimation procedure. In Column

\[^{22} \text{Observe that for low levels of } b_t \text{ and high level of } z \text{ this function is not defined. To avoid this problem(Campbell and Cochrane 1999) made } z \text{ a non-linear function of } b_t - r_t. \text{ For simplicity we treat } z \text{ as a parameter instead and we check in the optimum whether our utility function is defined for the relevant } b_t \text{ and } r_t. \]

\[^{23} \text{In the standard model we were able to estimate the relative risk aversion parameter and we found that the best performing CRRA utility function is close to linear utility (results are not reported).} \]
we use the identity matrix to weight the moments in the minimum distance estimator and in Column (7) we use the moments estimated after controlling for observables (shown in Figure 6(b)). Though the goodness of fit cannot be compared to the previous estimates, the qualitative conclusions are the same as before: the reference-dependent model fits substantially better than the standard model and the reference-dependence parameters, λ and N remain comparable to the benchmark specifications.

In Column (8) we vary the type of moments used. Instead of using the estimated hazard rates in each 15-day period, we use the estimated (unconditional) probability of exiting unemployment in each 15-day period. The advantage of this alternative procedure is that we can use the full variance-covariance matrix for weights. Once again, while the measures of fit are not comparable, the pattern of the results is very similar.

Finally, in Column (9) we explore the role played by the spikes in periods 270 and 360. One may worry that the spiked play a disproportional role in the identification given the quadratic distance measure used in the minimum distance estimator. When we re-estimate the model without using such moments we find once again similar patterns indicating that the results are not driven by the spikes.

Unobserved Heterogeneity. In Table 5 we return to examining the role played by the type of unobserved types in the estimates. So far, we have mostly assumed three types in the cost of search parameter k, capturing different levels in the ability to generate offers. We now examine the role of varying both the number of types and the type of heterogeneity. In the first 5 columns, we vary the number of cost types from 2 types (Column (1)) all the way to 6 types (Column (5)). The results for the reference-dependent model are clear: there is a minor improvement in fit going from 2 to 3 types, but the additional improvements in allowing additional types are basically nil. Indeed, estimates of the reference-dependent model with more than 3 types have trouble converging and lead, when converged, to essentially the same fit as the benchmark specification. The result that the 2-cost type fits almost as well as the 3-type model is important because the 2-type reference-dependent model has the same number of parameters as the benchmark standard model, and thus allows for a clean comparison of the goodness of fit.

Instead, allowing for additional types in the standard model keeps improving the fit, but at a decreasing rate. Increasing the number of types from 2 to 3 lead to a large improvement of fit, and the gain from 4 types (Column (3) is sizable. There are then further gains to moving to 5 and 6 types, but the gains are smaller. Indeed, even the model with 6 types does worse in terms of fit than the reference-dependent model, despite having 14 compared to 8 parameters. In particular, the versions of the standard model with many types capture very well the behavior up to day 270, but do not do anywhere nearly as well in capturing the
post-day 270 behavior.

Next, we consider alternative types of the unobserved heterogeneity. In Columns (6) and (7) we allow for heterogeneity in the reemployment wage with two different sets of assumptions. In both cases, we pin down the 3 types of reemployment wages using the data, and estimate the probabilities of the three types. In Column (6), we take the 5th, 50th, and 95th percentile in the reemployment wage in the data, while in Column (7), we take the 10th, 50th, and 90th percentile. Under both assumptions, we estimate also one cost parameter \(k \) and one curvature parameter \(\gamma \). The results indicate that the reference-dependent model does about equally well under these specifications, while the standard model does significantly worse. The standard model cannot fit the behavior in the data if we take as given the heterogeneity in reemployment wages from the data. We explore this further in the later section on reservation wage choices.

Finally, in Column (8) we consider the implication of allowing for heterogeneity in the curvature parameter \(\gamma \) instead. This alternative form of heterogeneity improves the fit of the reference-dependent model significantly, while the fit of the standard model is worse than in the standard specification. We conclude that alternative specifications of the heterogeneity do not generally help by much the fit of the standard model, or hurt it significantly. Instead, the reference-dependent model fits quite similarly under these alternative assumptions. This should not be surprising given that we presented evidence that the reference-dependent model in fact fits quite well even without any heterogeneity.

Reservation wages. So far we take the reemployment wage as fixed for each individual so that the unemployed accept every job offer and have job search effort as a choice variable. While this is consistent with a growing literature documenting a small role of reservation wages for job search dynamics (e.g. Card, Chetty, and Weber 2007, Schmieder, von Wachter, and Bender 2014, Krueger and Mueller 2013), traditionally job search has been modelled using both reservation wages and search effort thus allowing workers to reject jobs that do not offer a high enough wage. In order to test whether reservation wages would change our conclusions, we incorporate job acceptance decisions through a reservation wage into our model and reestimate this expanded model using additional moments based on individual reemployment wages. In this expanded model, individuals draw job offers from a (stationary) log-normal wage offer distribution and decide whether or not to accept it. Solving this model requires solving for an optimal reservation wage path and search effort path using backwards induction.

We set the standard deviation of the wage offer distribution at 0.5, close to the standard deviation of the actual reemployment wages. As an additional parameter we solve for the mean

\(^{24}\)In the baseline model there is a single reemployment wage for everyone. In the models in Table 5, columns (6) and (7) there are 3 different types of individuals who each face a different fixed reemployment wage.
of the wage offer distribution. In order to estimate this model we also use the reemployment wage path, i.e. the average reemployment wage of people exiting in period t after entering the UI system, in the pre- and post periods as addional moments. Since we have 35 reemployment wage moments in the pre- and post period, this adds 70 additional moments for a total of 140, which are used in the minimum distance estimator. At this point we estimate the model using linear utility functions, with log-utility being work in progress.

Table 6, Column (1) shows the estimates for the standard model incorporating reservation wages, while Column (2) shows the corresponding results for the reference dependent model. The mean of the wage offer distribution is close - slightly lower - to the average reemployment wage in the sample. The reference dependent model now implies slightly lower, but still sizable loss aversion, with $\lambda = 1.1$ and a somewhat faster adjustment speed of around 174 days, compared to the benchmark model. While the goodness of fit statistics are not directly comparable to the previous models because of the additional moments, the RD model performs clearly better than the standard model.

Appendix Figure A-5 shows the empirical moments (hazard rates and reemployment wage path) for both models together with the corresponding simulated moments from the model estimates. While we use the reemployment wage paths, those moments are quite noisy (no doubt due to the sample being relatively small compared to the variance in wages). Thus most of the identification still comes from the hazard rates with a limited role for the reemployment wage path. Since we use a linear utility function the fit of the RD model is slightly worse than when we use a log utility function (see Table 4). Nevertheless, with reservation wages we still obtain the basic result that the RD model fits the empirical moments quite a bit better than the standard model and can capture the observed crossing in the hazard rates around the 270 day mark quite easily.

Alternative Samples. So far we focused on individuals with pre-unemployment income sufficiently high such that they qualify for the highest possible UI benefit levels before and after the reform, thus yielding the cleanest natural experiment. One strength of our setting however is that we can compare whether other demographic groups that experienced different rule changes also display the same behavior and whether we obtain similar parameter estimates if we estimate our model on this subgroup of the population. Figure 2 highlights two alternative pre-unemployment income samples that we use. These are individuals with 75,000 to 85,000 HUF and 85 to 114,000 HUF. While they were not affected by the cap on the first step UI benefits after the reform, they nevertheless experienced the introduction of a two step UI system.

Figure 10 shows the corresponding actual hazard plots (the moments) and the simulated hazards from the estimated standard and the RD models for the two groups. Since both groups
had lower earnings prior to becoming unemployment, their UI benefits in the post-period over the first 90 days are lower than in our main sample while benefits between 90 and 270 days are unaffected. Thus there is a much smaller drop-off in benefits after 90 days, which is reflected in the absence of a clear spike in the post-period in Figure 10 (a) and (c) at 90 days. There is however still a clear difference in the size of the benefit drop at 270 days between the before and after period, both for the medium and the low earnings base group and we still see a much larger spike in the hazard rate for the before period at 270 days and then a smaller one at 360 days. In particular the hazard rates of the before and after period still cross just before the 270 days mark, as would be expected with reference dependent preferences if people search harder in anticipation of the large loss-utility occurred after the 270 day mark. The basic pattern is thus still in line with our main sample and consistent with reference dependent preferences.

Table 5 Columns (3) and (4), as well as Columns (6) and (7) show the results for estimating our baseline standard and RD model on these two alternative samples. For both samples the standard model again provides a substantially worse fit than the RD model (the goodness of fit being 165.8 vs 148.1 for the first sample and 110.3 vs. 94.4 for the second sample). It is also noteworthy that we obtain almost the same estimates for the adjustment time for the reference point of 270 and 277 days as in the benchmark model. Similarly the estimates suggest very similar values for λ, the gain-loss utility parameter. The fact that the estimates are so similar even though based on different samples and somewhat different natural experiment, is quite reassuring for our main estimates. Of course it is somewhat expected that the reference dependent model would be able to fit the data at least slightly better, since it allows for two additional free model parameters to be fitted thus offering more flexibility. In order to have a comparison of the reference dependent model with the same number of parameters as the standard model, we also estimated our model on the medium earnings base, however setting N and λ at the values that we obtain from our benchmark estimates (i.e. 255 and 1.73). Thus we estimate the same parameters as in the standard model (that is all the search cost parameters), while assuming the same utility function across different samples. The estimates are shown in Columns (5) and (8). For both the medium and low earnings base samples, using the loss aversion parameter and adjustment speed parameter from our benchmark estimates, yield almost the same fit as when the parameters are allowed to differ across sample. For example in the medium earnings base sample, holding N and λ at the benchmark values decreases the goodness of fit from 148.1 to 149.7, which is still much better than for the standard model. The same holds for the low earnings base sample.

Finally we also estimated our model using all three pre-unemployment income groups jointly. For this we used 70 moments from each of the three groups, thus 270 in total. We allowed for different cost parameters and shares of the different unobserved search cost groups, across the three income groups. This captures the
6 Discussion and Conclusion

In the previous section, we provided evidence that a model with reference-dependent preferences can explain qualitative features of the hazards which a standard model has a hard time fitting. The model itself builds on one of the most robust behavioral deviations from the standard model, reference dependence, and uses a natural candidate for a backward-looking reference point.

An important implication of the results above is that they open the door to potential redesigns in unemployment insurance policies. In particular, the evidence suggests that it is possible to design simple quasi-revenue-neutral transitions to two-steps systems which speed exit out of unemployment. While more evidence is needed to fully assess such UI designs, they open the door for a qualitative redesign of unemployment systems which typically instead involve only a one-step decrease. We should be clear though that we have not presented a full welfare analysis of such plans, which is beyond the scope of this paper.

Turning to some caveats, we want to stress an important limitation of the above analysis. The model at this point makes the stark assumption that individuals in each period consume their income. We make this assumption of hand-to-mouth consumers for computational reasons: incorporating a consumption-savings model with backward-looking reference-dependent preferences is computationally difficult, especially with slowly-updated reference points, as the evidence suggests. In the light of a consumption-savings model, one can interpret the current set-up as the approximate solution for an individual with high impatience and therefore no assets, since this individual would optimally choose to essentially consume hand-to-mouth. The high rates of discounting implied by the current estimates is not inconsistent with this scenario. In ongoing work we are exploring ways to incorporate endogenous saving decisions into the model using a backwards looking reference point that is only based on past income (and not consumption). Preliminary results indicate that this does not help the model fit of the standard model, but likely appears consistent with the reference dependent model with sufficiently low savings and discount rates.

fact that individuals in different income groups are likely different along other dimensions and face different job prospects. We do however restrict the parameters of the utility function to be the same across the three groups, in particular the search cost elasticity parameter \(\gamma \) as well as the RD parameters \(\lambda \) and \(N \). In this joint model, the RD model still provides a substantially better fit than the standard model. What is most striking is that even in this joint estimation we still obtain very similar estimates for the gain-loss parameter \(\lambda = 2.04 \) and for the adjustment period \(N = 255 \), suggesting that both estimates are quite robust to different samples and specifications.
References

Cockx, Bart, Muriel Dejemeppe, Andrey Launov, and Bruno Van der Linden, “Monitoring,

Table 1: Descriptive Statistics: Comparing Means of Main Variables Pre- and Post UI Reform

<table>
<thead>
<tr>
<th></th>
<th>before</th>
<th>after</th>
<th>diff</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Women</td>
<td>41%</td>
<td>46%</td>
<td>5.2%</td>
<td>5.75</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age in Years</td>
<td>36.8</td>
<td>36.9</td>
<td>0.06</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imputed Education (years)</td>
<td>12.83</td>
<td>13.00</td>
<td>0.17</td>
<td>4.20</td>
</tr>
<tr>
<td>based on occupation</td>
<td>(0.028)</td>
<td>(0.031)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Earnings in 2002</td>
<td>11.55</td>
<td>11.52</td>
<td>-0.03</td>
<td>-3.56</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Earnings in 2003</td>
<td>11.70</td>
<td>11.68</td>
<td>-0.03</td>
<td>-2.72</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Earnings in 2004</td>
<td>11.79</td>
<td>11.78</td>
<td>-0.01</td>
<td>-1.37</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waiting period*</td>
<td>31.1</td>
<td>32.0</td>
<td>0.84</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>(0.47)</td>
<td>(0.51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reemployment bonus claimed</td>
<td>0.000</td>
<td>0.059</td>
<td>0.059</td>
<td>19.81</td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0.003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participate in training</td>
<td>N.A.</td>
<td>0.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0)</td>
<td>(0.003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconsistent observations</td>
<td>0.024</td>
<td>0.022</td>
<td>0.022</td>
<td>-0.75</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of observations**</td>
<td>6305</td>
<td>5562</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Participation in training programs was not recorded prior to 2006.
* number of days between jobb loss and UI claim.
* for log earnings in 2002; 2003; 2004 there are some missing values.
Table 2: Structural Estimation of Standard and Reference Dependent Model

<table>
<thead>
<tr>
<th>Parameters of Utility Function</th>
<th>Benchmark I</th>
<th>Benchmark II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>RD 3-type</td>
</tr>
<tr>
<td>Utility function $v(.)$</td>
<td>$\log(b)$</td>
<td>$\log(b)$</td>
</tr>
<tr>
<td>Loss aversion λ</td>
<td>1.73</td>
<td>3.16</td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(0.24)</td>
</tr>
<tr>
<td>Gain utility η</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Adjustment speed of reference point N in days</td>
<td>255.0</td>
<td>200.9</td>
</tr>
<tr>
<td></td>
<td>(34.4)</td>
<td>(14.1)</td>
</tr>
<tr>
<td>Discount factor (15 days) δ</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters of Search Cost Function</th>
<th>Benchmark I</th>
<th>Benchmark II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticity of search cost γ</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Search cost for high cost type k_{high}</td>
<td>235.5</td>
<td>227.0</td>
</tr>
<tr>
<td></td>
<td>(10.6)</td>
<td>(4.3)</td>
</tr>
<tr>
<td>Search cost for medium cost type k_{med}</td>
<td>193.6</td>
<td>186.0</td>
</tr>
<tr>
<td></td>
<td>(4.2)</td>
<td>(11.7)</td>
</tr>
<tr>
<td>Search cost for low cost type k_{low}</td>
<td>91.2</td>
<td>83.2</td>
</tr>
<tr>
<td></td>
<td>(5.0)</td>
<td>(18.7)</td>
</tr>
<tr>
<td>Share of low cost UI claimant</td>
<td>0.458</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Share of medium cost UI claimant</td>
<td>0.538</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>Non-labor/UI income</td>
<td>331.5</td>
<td>290.6</td>
</tr>
<tr>
<td></td>
<td>(62.7)</td>
<td>110.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Fit</th>
<th>Benchmark I</th>
<th>Benchmark II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of moments used</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Number of estimated parameters</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Goodness of Fit</td>
<td>243.1</td>
<td>172.6</td>
</tr>
<tr>
<td>Heterogeneity in search-cost</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Non-market income estimated</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Notes: The table shows parameter estimates for the standard and the reference dependent search model. Estimation is based on minimum distance estimation, using the hazard rates in the pre- and post-reform periods as the moments. Standard errors for estimated parameters in parentheses.
Table 3: Alternative Specifications for Structural Estimation of Reference Dependent Model and Habit Formation Model

Models:

<table>
<thead>
<tr>
<th>Parameters of Utility Function</th>
<th>Benchmark I 3-types</th>
<th>AR(1) Updating</th>
<th>No Gain Utility</th>
<th>No Loss Utility</th>
<th>Alternative Eta</th>
<th>Fix $\lambda = 1$ Estim. η</th>
<th>Habit Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility function $v(.)$</td>
<td>log(b)</td>
<td>log(b)</td>
<td>log(b)</td>
<td>log(b)</td>
<td>log(b)</td>
<td>log(b)</td>
<td>log(b)</td>
</tr>
<tr>
<td>Loss aversion λ</td>
<td>1.73</td>
<td>1.94</td>
<td>1.2</td>
<td>0</td>
<td>6.58</td>
<td>0.84</td>
<td>3.03</td>
</tr>
<tr>
<td>(0.22)</td>
<td>(0.37)</td>
<td>(0.2)</td>
<td>(1.11)</td>
<td>(0.04)</td>
<td>(0.63)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain utility η</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2.77</td>
<td>0.2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(0.90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjustment speed of reference point N in days</td>
<td>255.0 (34.4)</td>
<td>240 (26.3)</td>
<td>15.0 (7.5)</td>
<td>240.0 (27.09)</td>
<td>300.0 (44.72)</td>
<td>270 (38.8)</td>
<td>120.0 (38.76)</td>
</tr>
<tr>
<td>Habit formation parameter z</td>
<td>0.38 (0.04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR(1) parameter</td>
<td>0.83 (0.03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implied half life of AR(1) process</td>
<td>56.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elasticity of search cost γ</td>
<td>0.06 (0.01)</td>
<td>0.06 (0.01)</td>
<td>0.07 (0.01)</td>
<td>0.14 (0.03)</td>
<td>0.07 (0.01)</td>
<td>0.08 (0.01)</td>
<td>0.07 (0.01)</td>
</tr>
<tr>
<td>Model Fit</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Number of moments used</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Number of estimated parameters</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Goodness of Fit</td>
<td>172.6</td>
<td>188.4</td>
<td>175.8</td>
<td>227.0</td>
<td>175.0</td>
<td>168.0</td>
<td>169.7</td>
</tr>
<tr>
<td>Heterogeneity in cost</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes:
The table shows parameter estimates for the reference dependent search model and the habit formation model. Estimation is based on minimum distance estimation, using the hazard rates in the pre- and post-reform periods as the moments. Standard errors for estimated parameters in parentheses.
Table 4: Estimating Standard and Reference Dependent Model under Alternative Specifications for Utility Function, Search Cost and Estimation Methods

<table>
<thead>
<tr>
<th>Models:</th>
<th>Linear Utility</th>
<th>Robustness on Utility Function</th>
<th>Statistical Robustness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>$k(1-\kappa)/(1-\kappa)$</td>
<td>$k(1-\kappa)/(1-\kappa)$</td>
</tr>
<tr>
<td>Standard Model</td>
<td>0.5</td>
<td>2</td>
<td>0.99</td>
</tr>
<tr>
<td>Util. function parameter κ</td>
<td>(0.007)</td>
<td>(0.011)</td>
<td>(0.045)</td>
</tr>
<tr>
<td>Discount factor (15 days) δ</td>
<td>0.05</td>
<td>0.07</td>
<td>0.23</td>
</tr>
<tr>
<td>Elasticity of search cost γ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time varying search cost</td>
<td>239.3</td>
<td>240.4</td>
<td>251.8</td>
</tr>
<tr>
<td>Number of estimated parameters</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Reference Dependent Model</td>
<td>1.95</td>
<td>1.97</td>
<td>1.37</td>
</tr>
<tr>
<td>Loss aversion λ</td>
<td>(0.15)</td>
<td>(0.19)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>Adjustment speed of reference point N in days</td>
<td>211.9</td>
<td>240.0</td>
<td>270.0</td>
</tr>
<tr>
<td></td>
<td>(17.5)</td>
<td>(24.3)</td>
<td>(43.3)</td>
</tr>
<tr>
<td>Discount factor (15 days) δ</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Elasticity of search cost γ</td>
<td>0.04</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>Time varying search cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of estimated parameters</td>
<td>179.8</td>
<td>175.3</td>
<td>173.7</td>
</tr>
<tr>
<td>Number of estimated parameters</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Heterogeneity in cost</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Number of moments used</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

Notes:
The table shows parameter estimates for the standard and the reference dependent search model. Estimation is based on minimum distance estimation, using the hazard rates in the pre- and post-reform periods as the moments.
Standard errors for estimated parameters in parentheses.
* These are the SSE with the identity weighting matrix and alternative moments respectively and are not directly comparable to the goodness of fit statistics in the other columns. * These SSE correspond to the reduced number of moments (that is not including the spikes). The comparable SSE from the standard model (that is also excluding the spike moments) are 176.5 and 122.0 respectively.
Table 5: Performance of Standard and Reference Dependent Model using Alternative Types of Heterogeneity

<table>
<thead>
<tr>
<th>Models:</th>
<th>2 cost types</th>
<th>3 cost types</th>
<th>4 cost types</th>
<th>5 cost types</th>
<th>6 cost types</th>
<th>Heterogeneity Wages 95-50-05</th>
<th>Heterogeneity Wages 90-50-10</th>
<th>Heterogeneity search cost elasticity γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticity of search cost γ</td>
<td>0.37</td>
<td>0.109</td>
<td>0.051</td>
<td>0.041</td>
<td>0.037</td>
<td>0.3604</td>
<td>0.3506</td>
<td>3-types</td>
</tr>
<tr>
<td>(0.13)</td>
<td>(0.018)</td>
<td>(0.007)</td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.0291)</td>
<td>(0.1704)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goodness of Fit</td>
<td>334.3</td>
<td>243.1</td>
<td>201.5</td>
<td>194.2</td>
<td>188.1</td>
<td>315.4</td>
<td>338.4</td>
<td>271.0</td>
</tr>
<tr>
<td>Number of estimated parameters</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Standard Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss aversion λ</td>
<td>2.13</td>
<td>1.73</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>2.12</td>
<td>2.01</td>
<td>1.93</td>
</tr>
<tr>
<td>(0.23)</td>
<td>(0.22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.110)</td>
<td>(0.109)</td>
<td>0.15</td>
</tr>
<tr>
<td>Adjustment speed of reference point N in days</td>
<td>247.4</td>
<td>255.0</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>251.8</td>
<td>253.2</td>
<td>91.6</td>
</tr>
<tr>
<td>(27.5)</td>
<td>(34.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(19.3)</td>
<td>(21.1)</td>
<td>6.4</td>
</tr>
<tr>
<td>Elasticity of search cost γ</td>
<td>0.08</td>
<td>0.06</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0.6844</td>
<td>0.5962</td>
<td>3-types</td>
</tr>
<tr>
<td>(0.01)</td>
<td>(0.01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0008)</td>
<td>(0.0008)</td>
<td></td>
</tr>
<tr>
<td>Goodness of Fit</td>
<td>178.3</td>
<td>172.6</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>172.9</td>
<td>178.5</td>
<td>152.2</td>
</tr>
<tr>
<td>Number of estimated parameters</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Notes:
The table shows parameter estimates for the standard and the reference dependent search model. Estimation is based on minimum distance estimation, using the hazard rates in the pre- and post-reform periods as the moments.
Standard errors for estimated parameters in parentheses.
* The reference dependent model does not converge with more than 3 types, indicating that additional types are not identified and do not improve the fit.
Table 6: Estimation of Standard and Reference Dependent Model

<table>
<thead>
<tr>
<th>Parameters of Utility Function</th>
<th>Reservation Wage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard Model (1)</td>
<td>Ref. Dep. Model (2)</td>
</tr>
<tr>
<td>Utility function</td>
<td>linear</td>
<td>linear</td>
</tr>
<tr>
<td>Loss aversion λ</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>Adjustment speed of reference point N in days δ</td>
<td>174 (17.9)</td>
<td>0.99 (0.03)</td>
</tr>
<tr>
<td>Discount factor (15 days) δ</td>
<td>0.99 (0.02)</td>
<td>0.99 (0.02)</td>
</tr>
<tr>
<td>Elasticity of search cost γ</td>
<td>0.10 (0.03)</td>
<td>0.10 (0.04)</td>
</tr>
<tr>
<td>Mean of wage offer distribution (in log)</td>
<td>5.96 (0.02)</td>
<td>5.95 (0.02)</td>
</tr>
<tr>
<td>Standard deviation of wage offer distribution</td>
<td>0.5 (0.02)</td>
<td>0.5 (0.02)</td>
</tr>
<tr>
<td>Model Fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Moments</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Number of estimated parameters</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Goodness of Fit</td>
<td>404.9</td>
<td>353.6</td>
</tr>
</tbody>
</table>

Notes:
The table shows parameter estimates for the standard and the reference dependent search model. Estimation is based on minimum distance estimation, using the hazard rates in the pre- and post-reform periods as the moments. Standard errors for estimated parameters in parentheses.
Table 7: Performance of RD and Standard Model on Alternative Samples

<table>
<thead>
<tr>
<th>Samples:</th>
<th>Benchmark Sample</th>
<th>Pre-UI Income Medium Earnings Base</th>
<th>Pre-UI Income Low Earnings Base</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Parameters of Utility Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility function</td>
<td>log(b)</td>
<td>log(b)</td>
<td>log(b)</td>
</tr>
<tr>
<td></td>
<td>(0.216)</td>
<td>(0.364)</td>
<td>(0.353)</td>
</tr>
<tr>
<td>Loss aversion λ</td>
<td>1.73</td>
<td>1.97</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>(0.216)</td>
<td>(0.364)</td>
<td>(0.353)</td>
</tr>
<tr>
<td>Gain utility η</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Adjustment speed of reference point N in days</td>
<td>255</td>
<td>270</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>(34.4)</td>
<td>(62.3)</td>
<td>(77.2)</td>
</tr>
<tr>
<td>Elasticity of search cost γ</td>
<td>0.11</td>
<td>0.18</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.043)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>Model Fit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Moments</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Number of estimated parameters</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Goodness of Fit</td>
<td>243.1</td>
<td>172.6</td>
<td>165.8</td>
</tr>
<tr>
<td>Heterogeneity in cost</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes:
The table shows parameter estimates for the standard and the reference dependent search model. Estimation is based on minimum distance estimation, using the hazard rates in the pre- and post-reform periods as the moments. Standard errors for estimated parameters in parentheses.
Figure 1: Model Simulations of the Standard and the Reference-Dependent model

Notes: Panel (a) shows two benefit regimes, both of them having a step-down benefit system. In the first step benefits are higher in the regime represented by squared blue line than in the regime represented by red solid line. In the second step benefits drops to the same level. Panel (b) shows the hazard rates predicted by the standard model (with $k = 130$, $\gamma = 0.6$, $w = 555$, $\delta = 0.99$) while Panel (c) the prediction of the reference-dependent model (with $k = 160$, $\gamma = 0.6$, $w = 555$, $\delta = 0.99$, $\lambda = 2$, $N = 10$).
Figure 2: The UI Benefit Schedule Before and After the 2005 Reform in Hungary

Notes: The figure shows monthly UI benefits in the first tier under the old rule (blue solid line) in the first 90 days under the new rules (red solid line) and between 91-270 days under the new rules (red dashed line) as a function of the monthly base salary. The main sample, defined by being above the 70th percentile of the earnings base distribution of the UI claimants in the given year, denoted by the curly brackets. We also show the sample definitions used for our out of sample analysis (results presented in Table 5): medium earnings base sample is defined by being between the 60th and 78th percentile of the earnings base distribution of the UI claimants in the given year, low earnings base sample is defined by being between the 60th and 78th percentile of the earnings base distribution of the UI claimants in the given year.
Notes: The figure shows the benefit schedule if UI is claimed on October 31, 2005 (old benefit schedule, dashed blue line) and benefit schedule if UI is claimed on November 1st, 2005 (new benefit schedule, solid red line) for individuals who had 270 potential duration in the first-tier, were less than 50 years old and earned more than 114,000 HUF ($570) prior to entering UI. Hypothetical benefit level is shown under social assistance. Benefits levels in social assistance depended on family income, household size and wealth and we do not observed these variables in our data.
Notes: The figure shows the time frame for which we have access to administrative data on unemployment insurance records, the time of the reform and how we define the before and after periods that we use for our before-after comparison. The timing of the reform was the following: those who claimed UI benefit before February 5th, 2005 faced with the old first tier schedule and old second tier schedule; those who claimed benefit between February 5th, 2005 and October 31st, 2005 faced with the old benefit schedule in the first tier and the new benefit schedule in the second tier; those who claimed benefit after November 1st, 2005 faced with the new benefit schedule in the first tier and the new benefit schedule in the second tier. To avoid complications caused by changes in the second tier, in our main specifications we focus on the (1 year) before sample, claimed UI between February 5th, 2005 and October 15th, 2005, and (1 year) after sample, claimed UI between February 5th, 2006 and October 15th, 2006. We use the (2 year) before sample and the (2 year) after sample to show that the changes in the hazard rates are in line with the timing of the reform. The first tier changes before and after October 31st, 2005 are presented in Figure 2 and Figure 3. The changes in the second tier in February 5th, 2005 were the following: potential duration shortened to 180 days above age 50 and to 90 days below that. Before, it was 270 days above age 45 and 180 days below that. The benefit level was raised slightly from 21,000 HUF ($101) to 22,800 HUF ($114).
Figure 5: Empirical Hazard and Survival Rates under the Old and the New Benefit Schedule

Notes: The figure shows point wise estimates for the empirical hazards, Panel (a), and for the empirical survival rates, Panel (b), before and after the reform. The differences between the two periods are estimated point-wise at each point of support and differences which are statistically significant are indicated with a vertical bar. The three major (red) vertical lines indicate periods when benefits change in the new system. The sample consists of unemployed workers claiming UI between February 5th, 2005 and October 15th, 2005 (before sample) and February 5th, 2006 and October 15th, 2006 (after sample), who had 270 days of potential duration, were 25-49 years old, and were above the 70th percentile of the earnings base distribution of the UI claimants in the given year (See Figure 4 for details).
Figure 6: Robustness Checks for change of Hazard rates before and after the reform

Notes: The figure shows point wise estimates for the empirical hazards before and after the reform. The differences between the two periods are estimated point-wise at each point of support and differences which are statistically significant are indicated with a vertical bar. The three major (red) vertical lines indicate periods when benefits change in the new system. In Panel (a) we controlled for sex, age, age square, waiting period (the number of days between job lost and UI claimed), the county of residence, day of the month UI claimed claimed, education, occupation (1 digit) of the last job, log earnings in 2002 and 2003. In Panel (b) in addition to controlling for these control variables we dropped reemployment bonus claimants and those participating in training program (after the reform), see text for the details. The sample is otherwise the same as in Figure 5.
Figure 7: Interrupted Time Series Analysis of Exit Hazards

(a) The evolution of the hazard rates between 30 and 150 days

(b) The evolution of the hazard rates between 210 and 330 days

Notes: The figure shows the level of the most important hazard rates 6 quarters before and 7 quarters after the reform. Panel (a) shows the seasonally adjusted hazard rates between 30 and 150 days, while Panel (b) shows the seasonally adjusted hazard rates between 210 and 330 days. The monthly seasonal adjustment of hazard rates takes into consideration the level shift present in the data in November, 2005. The figures highlight that the shift in the hazard plots documented earlier corresponds to the precise timing of the reform. Other sample restrictions are the same as in Figure 5.
Figure 8: Structural Estimation of the Standard and the Reference-dependent model

Notes: The figure shows the empirical hazards and the predicted hazards of the standard model, Panel (a) and (c), and of the reference-dependent model, Panel (b) and (d), with three cost types. Panel (a) and (b) contrast the Standard and RD model in the Benchmark I case (column (1) and column (2) in Table 2, respectively), while Panel (c) and (d) are based on the Benchmark II case (column (4) and (5) in Table 2). The three major (red) vertical lines indicate periods when benefits change in the new system.
Figure 9: Alternative estimates of the reference-dependent model

(a) Reference-Dependent Model, no heterogeneity
(b) Reference-Dependent Model, eta=5
(c) Reference-Dependent Model, AR(1) update
(d) Habit Formation Model

Notes: The figure shows the empirical hazards and the predicted hazards of the alternative versions of the structural estimations. Panel (a) shows the reference-dependent model with no heterogeneity in search cost (column (3) in Table 2). Panel (b), (c) and (d) present estimates with three cost types. Panel (b) shows the reference-dependent model with eta=5 (column (3) in Table 3) and Panel (c) presents the reference-dependent model with AR(1) updating of the reference point (column (4) in Table 3). Panel (d) shows the predictions of the habit formation model (column (8) in Table 3). The three major (red) vertical lines indicate periods when benefits change in the new system.
Figure 10: Structural Estimation of the Standard and the Reference-dependent model for groups with alternative earnings base

Notes: The figure shows the empirical hazards and the predicted hazards of the UI claimant with alternative earnings base. Panel (a) and Panel (b) present estimates for those whose earnings base were between the 60th and the 78th percentile of the earnings base distribution of the UI claimants in the given year. Panel (a) shows the fit of the standard model (column (3), Table 7) and Panel (b) for the reference-dependent model (column (5), Table 7). Panel (c) and Panel (d) present the results for those whose earnings base were between the 49th and the 60th percentile of the earnings base distribution of the UI claimants in the given year. Panel (a) shows estimates for the standard model (column (5), Table 7) and Panel (b) illustrates the estimates for the reference-dependent model (column (6), Table). All panels present estimations with three cost types. The three major (red) vertical lines indicate periods when benefits change in the new system.
Figure A-1: GDP growth and unemployment rate in Hungary

Notes: The figure shows the seasonally adjusted GDP growth rate (dashed red line) and the seasonally adjusted unemployment rate (solid blue) between 2003 and 2008 in Hungary. The major (red) vertical lines indicate the period we use for the before-after comparison. The data was obtained from the Hungarian Central Statistical Office.
Figure A-2: Comparison to (2 year) Before and (2 year) After

(a) Compare the hazards 2 year before and 1 year before

(b) Compare the hazards 2 year after and 1 year after

Notes: Panel (a) shows point wise estimates for the empirical hazards for two year before (claimed benefit between February 5th, 2004 and October 15th, 2004) and one year before (claimed benefit between February 5th, 2005 and October 15th, 2005) the actual reform. Panel (b) shows point wise estimates for the empirical hazards for one year after (claimed benefit between February 5th, 2006 and October 15th, 2006) and two year after (claimed benefit between February 5th, 2007 and October 15th, 2007) the actual reform. This graph is censored at 400 days because of data limitations. The differences between the two periods are estimated point wise at each point of support and differences which are statistically significant are indicated with a vertical bar. The three major (red) vertical lines indicate periods when benefits change in the new system. Other sample restrictions are the same as in Figure 5.
Notes: The figure shows estimates of the expected nonemployment duration of individuals exiting unemployment at the respective time. The expected nonemployment duration is derived as the predicted values from a regression of nonemployment duration on observable characteristics at the time of entering unemployment. These observable characteristics are the following: sex, age, age square, waiting period (the number of days between job lost and UI claimed), the county of residence, day of the month UI claimed claimed, education, occupation (1 digit) of the last job, log earnings in 2002 and 2003. The differences between the two periods are estimated point wise at each point of support and differences which are statistically significant are indicated with a vertical bar. The three major (red) vertical lines indicate periods when benefits change in the new system. The sample consists of unemployed workers claiming UI between February 5th, 2005 and October 15th, 2005 (before sample) and February 5th, 2006 and October 15th, 2006 (after sample) who had 270 days of potential duration, were 25-49 years old, and were above the 70th percentile of the earnings base distribution of the UI claimants in the given year.
Figure A-4: Structural Estimation of the Standard Model under Alternative Specifications

Notes: The figure shows the empirical hazards and the predicted hazards for estimations of the standard model under different specifications. Panel (a) corresponds to the standard model in Table (4) Column (4); Panel (b) to Table (4) Column (9); Panel (c) to Table (5) Column (2); and Panel (d) to Table (5) Column (3). Panel (a) allows for a linear trend in the cost of job search. Panel (b) estimates the model without the spikes at the three UI benefit drop-offs. Panel (c) and (d) estimate the model with 4 and 5 different types of individuals who vary in their cost of job search.
Figure A-5: Structural Estimation of the Standard Model and RD Model incorporating Reservation Wages

(a) Hazard rate in Standard Model

(b) Hazard rate in RD Model

(c) Reemployment Wage in Standard Model

(d) Reemployment Wage in RD Model

Notes: The figure shows the empirical hazards and the predicted hazards for estimations of the standard model and reference dependent model incorporating reservation wages and using reemployment wages by unemployment duration as additional moments. The figure corresponds to the columns (1) and (2) in Table 6.
Figure A-6: Model Components for Simulated Standard and Reference-Dependent Model, Part I

Notes: The figure shows the model components for the standard model (estimates showed in column (2) in Table 2) and for the reference-dependent model (estimates showed in column (5) in Table 2). Panel (a) and Panel (b) shows the flow utility for the standard model and for the reference-dependent model, respectively. Panel (c) and Panel (d) shows the value of unemployment for the low cost type for the standard model and for the reference-dependent model, respectively. The three major (red) vertical lines indicate periods when benefits change in the new system.
Figure A-7: Model Components for Simulated Standard and Reference-dependent Model, Part II

(a) Value of Employment, Standard Model

(b) Value of Employment, Reference-Dependent model

(c) Reference Point, Standard Model

Notes: The figure shows the model components for the standard model (estimates showed in column (2) in Table 2) and for the reference-dependent model (estimates showed in column (5) in Table 2). Panel (a) and Panel (b) shows the value of employment for the standard model and for the reference-dependent model, respectively. Panel (c) shows the the evolution of the reference point in the reference-dependent model. The three major (red) vertical lines indicate periods when benefits change in the new system.