Efficient Risk Estimation via Nested Sequential Simulation
Abstract
We analyze the computational problem of estimating financial risk in a nested simulation. In this approach, an outer simulation is used to generate financial scenarios and an inner simulation is used to estimate future portfolio values in each scenario. We focus on one risk measure, the probability of a large loss, and we propose a new algorithm to estimate this risk. Our algorithm sequentially allocates computational effort in the inner simulation based on marginal changes in the risk estimator in each scenario. Theoretical results are given to show that the risk estimator has a faster convergence order compared to the conventional uniform inner sampling approach. Numerical results consistent with the theory are presented.
Download PDF
Citation
Broadie, Mark, Yiping Du, and Ciamac Moallemi. "Efficient Risk Estimation via Nested Sequential Simulation." Management Science 57, no. 6 (June 2011): 1172-1194.
Each author name for a Columbia Business School faculty member is linked to a faculty research page, which lists additional publications by that faculty member.
Each topic is linked to an index of publications on that topic.