Experimental Design and Analysis
for Behavioral Research
B9610-14

Spring 2008

Professor: Michel Tuan Pham
515 Uris Hall
Tel.: 854-3472
tdp4@columbia.edu

Teaching assistant: TBA

Meeting time: TBA (4-hour sessions)
Classroom: TBA

Course Objectives

This course is aimed at Ph.D. students who intent to conduct experimental and quasi-
experimental research in business (e.g., marketing, organizational behavior) and related
disciplines (e.g., economics, psychology). The primary objective of the course is to provide
such students with the concepts and tools needed for collecting and analyzing behavioral
data. A secondary objective is to provide these future academic reviewers the foundations
for the methodological evaluation of other behavioral researchers’ work. The course thus
covers the designs and analyses that are most often used by experimental researchers in
the following fields: marketing, organizational behavior, and psychology. Topics include:
factorial designs, repeated (within-subject) and mixed designs, fractional (e.g., Latin
squares) designs, analysis of covariance, etc.

We will examine these designs and analyses from the perspective of an applied behavioral
researcher, not from that of a statistician. That is, we will emphasize the actual use of
proper data collection procedures and analysis techniques for rigorous (i.e., publishable)
theory testing. Although there will be sufficient coverage of statistical concepts (to ensure
that the procedures and techniques are applied intelligently), we will not focus on statistical
theory per se (as would related courses in a statistics department).

In addition to the objectives mentioned above, the course will offer students an opportunity
to get started with the use of SAS, one of the most widely used statistical programming
languages for manipulating and analyzing data. While this will not be a course on SAS
itself, students should become comfortable with this platform by the end of the course. This comfort will eventually allow them to move to more complex applications using SAS (or similar languages).

Material

There are two required texts. Please arrange to obtain your own copy before the first class (e.g., through Amazon.com). I realize that these books are expensive. However, these are genuine investments that will pay off in your career. Additional readings will be distributed throughout the semester as well as a comprehensive set of teaching notes.


Course Conduct

The class will be conducted in a seminar format. However, given the technical nature of the material, there will be a fair amount of lecturing and personal advice (and opinions) on my part. Still, it is primarily your responsibility to do whatever it takes to learn as much as you can from this class. Remember: It is not just about receiving a good grade; it is about acquiring fundamental skills to become rigorous (and hopefully successful) behavioral researchers.

Each session will have an analysis component and a design component. The analysis component will be based essentially on the Keppel and Wickens text (hereafter Keppel), and to a lesser extent on the Cody and Smith text (hereafter shortened as SAS). Assigned chapters should be read before each class. At the end of each class selected exercises from the texts will be assigned to reinforce the analysis concepts covered. There will also be two take-home exams that will test your ability to analyze experimental data.

I believe that design skills can only be taught through (good and bad) examples; the more, the better. The design component will thus draw on additional readings, discussions of existing published and unpublished studies, as well as on personal experiences and opinions. You will receive several written assignments requiring that you evaluate other researchers' designs.
These course components and assignments will be weighted as follows:

**Short Exercises (15%).** These will be selected from the texts and assigned after each class. They will focus on the analysis and SAS components of the class.

**Take-Home Analysis Exam (50%).** There will be two take-home exams, which are in fact open-notes assignments. These assignments will also focus on the analysis aspect of the course. You will be asked to complete entire data analyses of different types of experiments. The dates will be announced later in the term.

**Design and Analysis Evaluation (20%).** You will be asked to evaluate the design and analyses performed by other researchers and suggest improvements as if you were a reviewer.

**Participation (15%).** Please be punctual in coming to class and turning in your assignments. We will devote about two hours in each class to design issues. This part of the session will be more open-ended. You should therefore feel free to bring up design issues that you are confronted with in your current research. Also feel free to discuss designs that you came across in your own readings. That way, everybody will get a chance to be exposed to a wide variety of designs. You will be graded based on your overall contribution to this discussion, both as a problem raiser and a problem solver.

**Other recommended references:**


**NOTE:** MAKE SURE TO GET THE BOOKS AND COMPLETE THE ASSIGNMENTS FOR CLASS 1. (We cannot afford to lose a class session.)
<table>
<thead>
<tr>
<th>Topic</th>
<th>Readings</th>
<th>Assignment</th>
<th>Date (Tentative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to Experimental Design</td>
<td>Keppel: Ch. 1, Kirk: Ch 1, SAS: Ch. 1, 12, Lee (2000), Pham et al. (2001)</td>
<td>Setup computer account that can run SAS, Do SAS problems 12-1, 12-2, 12-3, 1-1</td>
<td>01/24/06</td>
</tr>
<tr>
<td>and Data Analysis with SAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keppel 2.1 (a,b,c), Note 1.6 (meaningful contrasts), SAS 2-3; 2-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Foundations of ANOVA, One-way ANOVA, &amp;</td>
<td>Keppel: Ch. 2, 3, &amp; 7, SAS: Ch. 2 &amp; 13</td>
<td></td>
<td>01/31/06</td>
</tr>
<tr>
<td>ANOVA Assumptions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keppel 3.5 (b), 7.1, SAS 7-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Planned Comparisons &amp; Trend Analysis</td>
<td>Keppel: Ch. 4-5, SAS: Ch. 7 (section A-C), Howard et al. (1995), Pham &amp; Vanhuele (1997)</td>
<td></td>
<td>02/07/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keppel 8.3, 8.6, Effect size interpretation (Notebook p. 28), SAS 17-1, 17-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Between-Subjects Factorial Designs-Part</td>
<td>Keppel: Ch. 10-12, SAS: Ch. 7 (sections D &amp; E), 17, Pham &amp; Ames (2000), Manucia et al. (1984)</td>
<td>Keppel 11.1, 12.3, Do above problems in SAS as well</td>
<td>02/21/06</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Readings</td>
<td>Assignment</td>
<td>Date (Tentative)</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 7. Introduction to Within-Subjects Designs: One-way repeated ANOVA | Keppel: Ch. 16  
SAS: Ch. 8 (sections A-C)  
SAS 8-1, 8-2 | 03/14/06 |
| 8. Factorial Within-Subjects Designs | Keppel: Ch. 18  
SAS: Ch. 8 (section E) | Keppel 16.1 (a)  
Do same as above in SAS | 03/21/06 |
| 9. Mixed Designs | Keppel: Ch. 19-20  
SAS: Ch. 8 (sections D, F, G)  
Muthukrishnan et al (2001)  
Ames and Pham (2000) | TBA | 03/28/06 |
| 10. Block Designs & Continuous Factors | Keppel: Ch. 15  
SAS: Ch. 7 (section H) | TBA | 04/04/06 |
| 11. Analysis of Covariance & Tests for Mediation | Baron and Kenny (1986);  
Hastak and Olson (1989) | TBA | 04/11/06 |
| 12. Latin-Squares and Fractional Designs | TBA  
Wagenaar (1969) | TBA | 04/18/06 |