Compensating Cognitive Capabilities, Decision Performance, and Aging

Ye Li1, Martine Baldassi1, Eric J. Johnson1, and Elke U. Weber1

1Center for Decision Sciences, Columbia University

Address for correspondence:
Ye Li
Center for Decision Sciences
Columbia University
310 Uris Hall
3022 Broadway Avenue
New York, NY 10027
Email: yl2629@columbia.edu
Tel: 847.666.5353
Fax: 212.864.4857
Abstract (Word Count: 246)

Older adults have lower levels of fluid intelligence than younger adults, but decision-making studies do not always find worse performance for older adults, sometimes finding no difference or even better performance instead. We propose that age differences in decision performance result from the interplay between capabilities for which older adults are worse off than younger adults (e.g., fluid intelligence and executive functions) and capabilities for which older adults are better (e.g., crystallized intelligence). In particular, we hypothesized that higher levels of crystallized intelligence would help offset lower levels of fluid intelligence for older adults and that they would perform better or worse than younger adults depending on the relative importance of each capability for the decision task. We tested this compensating cognitive capabilities hypothesis in a broad sample of younger and older adults, collecting a battery of standard cognitive measures and measures of economically important decision-making traits—including temporal discounting, loss aversion, financial literacy, and debt literacy. We found that older participants performed as well as or better than younger participants on these four decision-making measures. Structural equation modeling revealed that fluid intelligence, crystallized intelligence, and inhibitory control were significant partial mediators of decision-making age differences. Specifically, we found that older participants’ greater crystallized intelligence offset their lower levels of fluid intelligence for financial and debt literacy as well as temporal discounting, but not for loss aversion. These results have important implications for public policy and for the design of effective decision environments for older adults.

Keywords: Cognitive Aging; Decision Making; Fluid Intelligence; Crystallized Intelligence; Inhibitory Control; Financial Literacy
1. INTRODUCTION

Lay people seem to simultaneously hold two conflicting views about aging: that age brings wisdom, and that age brings senility. In many respects, the idea that “older is wiser” has found empirical support: older adults show better emotion regulation (Charles & Carstensen, 2010; Samanez-Larkin & Carstensen, 2011), are better at reasoning about interpersonal and intergroup conflicts (Artistico, Cervone, & Pezzuti, 2003; Grossmann et al., 2010; Thornton & Dumke, 2005), and, most relevant for the current research, show increases in crystallized intelligence—that is, in experience and accumulated knowledge—into their 60s, after which it plateaus (Salthouse, 2004).

However, cognitive aging research has also shown that a wide range of cognitive capabilities decline with age, including reasoning, processing speed, and working memory (Salthouse, 2004, 2010; Schaie, 1993). These capabilities are generally categorized as fluid intelligence, that is, they relate to the “ability to generate, transform and manipulate information” (Salthouse, 2010). Fluid intelligence seems critical for decision-making; yet, on average, individuals in their 60s will have lost more than one standard deviation in fluid intelligence since their 20s. In other words, the average 70-year-old will perform below the 20th percentile level of 20-year-olds across most measures of fluid intelligence (Salthouse, 2010). Given the decline of these capabilities with age, do people become wiser decision-makers as they age, or do they get worse? If older decision-makers are wiser, how do they make up for their lower levels of fluid intelligence?

Papers in this area have typically examined the impact of age on either cognitive capability or on decision performance. In this paper we combine these measures, examining younger and older adults on several important components of decision performance and directly relate observed differences in decision performance to differences in cognitive capabilities. We focus on several decision-making traits known to affect the quality of a wide range of important real-world economic decisions. Specifically, we examine the respective roles of older adults’ lower levels of fluid intelligence and higher levels of crystallized intelligence, proposing that
both fluid and crystallized intelligence can contribute to better decision performance on many tasks. Explaining differences in decision performance requires that we understand the interplay between the cognitive capabilities. In particular, we posit that older adults’ higher levels of crystallized intelligence may offset their lower levels of fluid cognitive capabilities in a wide variety of decisions since both the processing of new information as well as past experience and accumulated knowledge play a role. We call this interplay the compensating cognitive capabilities hypothesis, henceforth compensating capabilities for short.

We first review what is known about the relationship between age and cognitive capability, describing capabilities that increase and decrease with age. We then review the literature on individual differences in decision performance, focusing on those abilities most likely to directly impact the decisions of an aging population and discuss how these results might be integrated with age differences in cognitive capabilities. Finally, we present a large-scale panel study that assesses these cognitive capabilities and decision-making traits in both younger and older adults, thus showing the effects of the compensating capabilities of crystallized and fluid intelligence on decision performance.

2. COGNITIVE CAPABILITIES, AGE, AND DECISION MAKING

2.1 Declining Capabilities: Fluid Intelligence and Inhibitory Control

Cognitive aging research has consistently found that fluid cognitive capabilities show a nearly linear decline with age starting from early adulthood, including capabilities such as processing speed and efficiency (Li et al., 2004; Salthouse, 1991, 1994, 1996), working memory (McArdle, Ferrer-Caja, Hamagami, & Woodcock, 2002; Salthouse, 1992), explicit learning (Salthouse, 2006), and attention and problem solving (Craik & Salthouse, 2000). These declines may be especially noticeable when performing complex or novel tasks that require more active processing (Zacks, Hasher, & Li, 2000).

One important correlate of fluid intelligence is inhibitory control, or the ability to inhibit
prepotent responses. One of the three core executive functions—along with shifting and updating—inhibitory control is important when making a good decision requires overcoming a default, habitual, or salient first response (Friedman et al., 2006; Salthouse, Atkinson, & Berish, 2003). A recent model of preference construction, Query Theory (Johnson, Häubl, & Keinan, 2007), suggests that differences in inhibitory control should affect decision performance for a number of decision-making phenomena such as the endowment effect (Johnson et al., 2007), temporal discounting (Lerner, Li, & Weber, 2011; Weber et al., 2007), default effects (Dinner, Johnson, Goldstein, & Liu, 2011), and attribute labeling (Hardisty, Johnson, & Weber, 2010). Inhibitory control has been shown to decline with age (Hasher, Zacks, & May, 1999; Salthouse et al., 2003) and may therefore provide another obstacle to good decision making in older adults.

2.2 Increasing Capabilities: Knowledge and Experience-Based Factors

While fluid intelligence and executive functions reflect cognitive capabilities important for processing information in novel situations, crystallized intelligence reflects a stable depository of knowledge acquired through experiences, culture, and education (Carroll, 1993; Cattell, 1971, 1987; Salthouse, 2010). Whereas research on fluid intelligence shows uniform declines with age, research on crystallized intelligence shows it to increase with age into the 60s and to remain largely preserved thereafter (Horn & Cattell, 1967; Li et al., 2004; Salthouse, 2004, 2006, 2010). It has been argued that crystallized intelligence is related to different components of wisdom, including taking multiple perspectives, allowing compromises, and recognizing the limits of one’s knowledge (Grossmann et al., 2010). The present study examines how this accumulated, experience-based knowledge influences decision making. In particular, we investigate whether older adults’ higher levels of crystallized intelligence can help offset their lower levels of fluid intelligence. Following standard practice (e.g., Friedman et al., 2006; Hambrick, Salthouse, & Meinz, 1999; Mata, Schooler, & Rieskamp, 2007; Ratcliff, Thapar, & McKoon, 2010), we used measures of vocabulary and general knowledge to assess a global measure of crystallized intelligence rather than specific knowledge in different domains.
However, whereas past research has related domain-specific knowledge to domain-specific task performance, such as vocabulary and general knowledge for crossword puzzles (Hambrick et al., 1999), we treat these as domain-general measures of crystallized intelligence and relate them to task performance across multiple domains. An advantage of using such domain-general measures of crystalized intelligence is that we can make predictions independently of domain.

2.3 Individual Differences in Decision Performance

There has been emerging interest in the relationship between cognitive capability and decision making (Agarwal & Mazumder, 2010; Del Missier, Mäntylä, & Bruine de Bruin, 2011; Dohmen, Falk, Huffman, & Sunde, 2010; Shamosh & Gray, 2008) and in relating age differences in decision making to age differences in cognitive capability (Bruine de Bruin, Parker, & Fischhoff, 2011; Hanoch, Wood, & Rice, 2007; Mata et al., 2007; Mather, 2006; Peters, Hess, Vaestfjaell, & Auman, 2007). Most of this research distinguishes between the deliberative and controlled processing (System 2), and the implicit, automatic, and often affective processing (System 1) described in dual-process models of decision making (Kahneman, 2003; Kahneman & Tversky, 1996; Sloman, 1996). The argument goes that, as deliberative processes decline with age, implicit and automatic forms of knowledge, such as affect, become more important inputs into decisions (Mather, 2006; Peters, Finucane, MacGregor, & Slovic, 2000; Peters et al., 2007). Researchers have argued that due to an imbalance between deliberative and affective modes, older adults are less able to control the impact of automatic processing and therefore might be more prone to decision-making biases and to fall prey to marketing manipulations using affective appeals (Hess, McGee, Woodburn, & Bolstad, 1998; Hess, Waters, & Bolstad, 2000; Jacoby, 1999). However, relying on affective cues has also been shown to be useful in some decisions, such as in the Iowa gambling task (Damasio, 1994). Indeed, relying on heuristics and affective cues can be efficient in many cases. For example, researchers have found that older adults rely on simpler information search strategies and take less information into account before making decisions (Besedes, Deck,
Sarangi, & Shor, 2010; Mata & Nunes, 2010; Mata et al., 2007; Queen & Hess, 2010), arguing that increased experience-based knowledge helps older adults make appropriate decisions without actively processing all the information.

Although many researchers have theorized about possible connections between changing cognitive processes and age differences in decision performance, few decision-making researchers have empirically assessed cognitive capabilities (for exceptions, see Agarwal & Mazumder, 2010; Del Missier et al., 2011; Dohmen et al., 2010). Most papers in this domain examine only the effects of age on decision making and paint a relatively puzzling picture. Some aspects of decision making seem to worsen with age, including susceptibility to framing effects (Finucane, Mertz, Slovic, & Schmidt, 2005; Kim, Goldstein, Hasher, & Zacks, 2005), applying decision rules (Bruine de Bruin, Parker, & Fischhoff, 2007), making the optimal choice when the number of options increases (Besedes et al., 2010), being overconfident (Crawford & Stankov, 1996), and being increasingly risk averse across many domains (Dohmen et al., 2011). However, other research finds no age differences in susceptibility to framing (Mayhorn, Fisk, & Whittle, 2002; Roennlund, Karlsson, Laggaess, Larsson, & Lindstroem, 2005), performance on the Iowa Gambling Task, or the endowment effect (Kovalchik, Camerer, Grether, Plott, & Allman, 2005). Still other research finds that older adults make better decisions. They have more accurate evaluations of their own knowledge (Kovalchik et al., 2005), are less affected by the sunk-cost fallacy (Strough, Mehta, McFall, & Schuller, 2008), and are better at avoiding the influence of irrelevant alternatives (Kim & Hasher, 2005; Tentori, Osherson, Hasher, & May, 2001). Finally, some studies report a curvilinear relationship between age and decision-making ability: middle-aged adults are more patient (Read & Read, 2004) and make fewer financial mistakes (Agarwal, Driscoll, Gabaix, & Laibson, 2010) than either younger or older adults.

2.4 Compensating Capabilities, Decision Performance and Aging

The combination of older adults’ lower levels of fluid intelligence and inhibitory control with their higher levels of crystallized intelligence gives rise to the intriguing possibility that
both may mediate the effect of age on decision performance. We outline this multiple mediator model in Figure 1. Here, we omitted inhibitory control for simplicity because its effect is similar to that of fluid intelligence, but this framework can be generalized to additional mediators. As indicated by the positive path coefficients on the two arrows on the right side of Figure 1, we hypothesize that both fluid and crystallized intelligence are positively related to decision performance. However, based on the abundant evidence of opposing age trends in these two capabilities (indicated by positive and negative path coefficients on the two arrows on the left side of Figure 1), understanding the relationship between age and decision performance requires understanding multiple pathways to good decision performance. Using a notation similar to that of standard mediation analysis, we refer to the multiplicative product of age relationships with fluid and crystallized intelligence and their relationships with decision making as the indirect effects of age on decision making \((a_i \times b_i)\), as opposed to the direct effect \((c')\) of age. We define the total effect \((c)\) as the relationship between age and decision making when we do not control for mediators; this is by definition equal to the sum of the direct effect and indirect effects.

Figure 1 implies several requirements for understanding the relationship between age and decision performance. First, because there are different age effects on fluid and crystallized intelligence, research needs to assess both capabilities. Examining the effect of one in the absence of the other may be misleading due to omitted variable bias, which could either overstate or understate the effect of the examined variable. Second, the relationship between age and a given decision task will depend not only on the relationships of age with fluid and crystallized intelligence but also on the relative impact of crystallized and fluid intelligence on the particular task. If crystallized intelligence is a more important determinant of decision performance than fluid intelligence, we might expect performance to increase with age. The opposite would be true for tasks where fluid intelligence plays a more important role.

Finally, Figure 1 suggests that relationships between age and performance may be masked by the opposing indirect effects of age via crystallized and fluid intelligence (Zhao,
Lynch, & Chen, 2010). The total effect \(c \) of age on performance may appear to be zero, but there may nonetheless be indirect effects of age on performance via crystallized and fluid intelligence in opposing directions. Further, even when \(c \) is zero, it is possible for the direct effect of age on performance \((c') \) to be significant upon controlling for mediators with a net suppression effect. Thus, our model suggests that simply looking for observed age effects alone may be misleading and instead proposes an important, possibly more general, pattern of compensating capabilities: that older adults’ lower levels of fluid intelligence can be offset by their higher levels of crystallized intelligence.

It should be noted that Figure 1 does not necessarily suggest a temporal order or causality to the compensation. That is, crystallized intelligence does not increase as a response to the loss of fluid intelligence with age, but instead increases coincidentally as a function of acquiring additional experience. Therefore, our use of the word “compensate” differs from conventional usage by developmental psychologists and neuroscientists, who use the word to describe compensatory reaction to a loss (Bäckman & Dixon, 1992; Baltes, 1997). Compensation in our paper refers to the possibility that experience-based knowledge provides another pathway to good decision making, and one that allows for good performance when lower levels of fluid intelligence make reasoning-based pathways less successful. We expect that many tasks can be executed or “solved” via multiple pathways. For example, people can make intertemporal financial choices by calculating present values as dictated by interest rates; or they can use their experience with similar intertemporal tradeoffs without making any calculations.

3. STUDY

3.1 Overview

To explore the potentially complex relationships between age, cognitive capabilities, and decision performance, we administered multiple measures for each variable in four waves of an online study to both younger and older adults. We analyzed the data using a standard two-step
structural equation modeling approach, first building separate measurement models for the
cognitive capabilities and decision-making traits, and then combining the two measurement
models and analyzing both as functions of age. Since any measure of cognitive capability or
decision making can only measure the underlying trait with error, structural equation modeling
allows us to assess the common variance shared by different measures of each latent construct,
giving us greater reliability than is possible with single measures. Although the entire model is of
interest, we focus this paper on the role of the cognitive capabilities in mediating effects of age
on decision performance.

To the best of our knowledge, our study is the first attempt to combine multiple standard
measures of fluid and crystallized intelligence from the cognitive aging literature with multiple
measures of each of a number of important decision-making traits from the judgment and
decision-making literature and to show their relationship with age. In doing so, we extend the
standard paradigm used by the cognitive aging literature (e.g., Salthouse et al., 2003) to the
decision making domain. In particular, one strength of this paradigm is that collecting multiple
measures of each construct allows us to use structural equation modeling to assess the reliability
of each measure, something that most decision-making researchers do not account for. Decision-
making studies generally assume perfectly reliable measures, which can rarely be justified.

3.2 Selection of decision-making traits

We initially assessed decision performance on six different abilities described below:
Temporal discounting, loss aversion, anchoring, resistance to framing, debt literacy, and
financial literacy. We selected these tasks for their implications for a range of real-world
decisions with important financial and health consequences. We also hoped to establish whether
performance on these tasks would reveal reliable individual differences across different versions
of each—that is, whether observed differences in decision performance on each task could be
due to stable decision-making traits.

Temporal discounting is the degree to which people discount future gains and losses (for
review, see Frederick, Loewenstein, & O'Donoghue, 2002) and has been found to be much higher, given the cost of borrowing, than would be expected for most people. This impatience has been found to affect decisions regarding saving and allocating assets (Angeletos, Laibson, Repetto, Tobacman, & Weinberg, 2001), using credit cards for borrowing (Meier & Sprenger, 2010), walking away from underwater mortgages (Atlas, Johnson, & Payne, 2011), smoking and other addictive behavior (Bickel & Marsch, 2001; Khwaja, Silverman, & Sloan, 2007), and lifestyle choices related to obesity and exercise (Chabris, Laibson, Morris, Schuldt, & Taubinsky, 2008; Weller, Cook, Avsar, & Cox, 2008).

Loss aversion is the degree to which valuations of losses outweigh those of gains of the same magnitude (for review, see Tversky & Kahneman, 1991). Loss aversion has been shown to lead investment bank managers to focus on avoiding losses rather than making gains (Willman, Fenton-O'Creevy, Nicholson, & Soane, 2002), small investors to hold onto losing stocks too long (Odean, 1998), home owners to set higher selling prices (Genesove & Mayer, 2001), and consumers to response asymmetrically to price changes (Hardie, Johnson, & Fader, 1993).

Anchoring is the tendency for consideration of one number to influence subsequent numerical judgments (for review, see Chapman & Johnson, 2002) and has been shown to affect consumers’ perception of product values and purchase quantities (Ariely, Loewenstein, & Prelec, 2003; D. Green, Jacowitz, Kahneman, & McFadden, 1998; Nunes & Boatwright, 2004), judgments of buying and selling prices (Simonson & Drolet, 2004), real estate appraisals (Northcraft & Neale, 1987), purchase quantities (Wansink, Kent, & Hoch, 1998), and credit card repayment amounts (Stewart, 2009).

Resistance to framing. Following Bruine de Bruin and colleagues (2007), we also attempted to measure people’s tendency to be affected by normatively irrelevant variation in how problems are presented. For example, people have been shown to be affected by whether options are framed as gains versus losses (Tversky & Kahneman, 1981). The framing of options can affect decisions regarding alternative cancer treatments (McNeil, Pauker, Sox Jr, & Tversky, 1982), insurance (Johnson, Hershey, Meszaros, & Kunreuther, 1993), health behaviors (Rothman
& Salovey, 1997), and negotiations (Neale & Bazerman, 1985).

Financial literacy and debt literacy refer to the ability to understand financial information and decisions (Lusardi & Mitchell, 2007), and the ability to make decisions regarding debt contracts and understand interest rates (Lusardi & Tufano, 2009), respectively. Although we are mostly interested in more domain-general decision performance characteristics, we also examined these two domain-specific measures due to their obvious impact on financial decisions. Financial and debt literacy are increasingly important as consumers are faced with more difficult economic decisions. To use retirement savings as an example, the increase in self-managed defined contribution plans presents challenges and opportunities not present in previous defined-benefit plans. People with better financial literacy are more likely to participate in the stock market (Van Rooij, Lusardi, & Alessie, 2011), choose better mutual funds (Hastings & Tejeda-Ashton, 2008), accumulate and manage wealth effectively (Hilgert, Hogarth, & Beverly, 2003), and plan for retirement (Lusardi & Mitchell, 2006, 2007, 2009), whereas people with better debt literacy are more likely to have lower borrowing costs (Lusardi & Tufano, 2009).

3.3 Methods

3.3.1 Sample and Procedure

Younger adults (age range: 18-29, $M = 24.76$, $Median = 25$, $SD = 2.91$) and older adults (age range: 60-82, $M = 66.39$, $Median = 65$, $SD = 4.93$) from the Columbia University Center for Decision Sciences’ Virtual Lab Panel completed all four waves of a web-based survey consisting of cognitive, decision-making, and demographic measures. This panel consists of 55,000 individuals who have agreed to participate in psychological and decision research for monetary compensation. We selected participants from the panel who fell within each specified age range and who were residents of the United States. Participants received email invitations between February 2009 and June 2009 (waves 1 through 3) and between June and September 2010 (wave 4). The last wave was delayed by a year to assess the reliability of the decision measures. Participants who completed each wave received invitations to subsequent waves. Participants
were paid $25 upon completion of the first three waves and $15 after the fourth wave via their choice of PayPal payments or Amazon.com gift certificates. In addition, we made three of the decision-making measures incentive compatible.¹

In total, 632 American participants (Nyoung = 332, Nold = 300) completed the first wave, 562 (11.1% dropout) completed the second, 516 (8.2% dropout) completed the third, and 336 (34.9% dropout) completed the fourth, for a total dropout rate of 46.8%. The dropout rates were low considering that more than a year elapsed between the first and fourth waves (Reips, 2002). Importantly, there was no difference in dropout rates between younger (47.9%) and older groups (45.7%). No demographic, cognitive or decision-making measure predicted whether participants dropped out, after making a Bonferroni correction for multiple comparisons, suggesting that we do not need to account for selection effects.

Table 1 shows the socioeconomic distributions for both younger and older participants. Our final sample consisted of 173 younger and 163 older participants. Older participants were somewhat more educated than younger participants, with a higher percentage attaining post-graduate degrees (26.4% vs. 15.0%), $\chi^2(1) = 6.63, p < .01$, and had higher household incomes.

3.4 Tasks and Measures

3.4.1 Cognitive measures

Participants completed a total of eleven standard cognitive tasks designed to measure fluid intelligence, crystallized intelligence, and inhibitory control. These tasks were distributed across all four waves (see Table 2) and interspersed with the decision-making measures and each other. More details on each task can be found in the supporting materials online.

Fluid intelligence. Among our five measures of fluid intelligence, the most widely used was the *Raven’s Progressive Matrices* task (Raven, 1962), a non-verbal test of inductive and

¹ Intertemporal choices in the first, third, and fourth waves were played for real money for 1 in 50 participants. These additional payments ranged from $20 to $110 depending on participants’ choices.
analytic reasoning. The version we used, adapted from Salthouse, Pink, and Tucker-Drop (2008) asked participants to determine which option correctly filled in the missing cell for each of 18 3×3 matrices. We also included two other standard measures of inductive and reasoning ability. *Letter Sets* (Ekstrom, French, Harman, & Derment, 1976; Salthouse et al., 2008; Thurstone, 1962) asked participants which of five letter sets (e.g., NOPQ, DEFL, ABCD, HIJK, and UVWX) did not fit the rule that the other four fit (e.g., DEFL). *Number Series* (Thurstone, 1962) asked participants to fill in the blank in six series of numbers (e.g., 23, 26, 30, 35, __) in an adaptive two-block version (McArdle & Woodcock, 2009).

Finally, we included two individual difference measures commonly used in decision research that may measure fluid intelligence: The *Cognitive Reflection Test* (CRT; Frederick, 2005; Frederick et al., 2002) consists of three math questions that yield quick but incorrect first responses. *Numeracy* (Lipkus, Samsa, & Rimer, 2001) tests the ability to understand probability and mathematical concepts. The CRT has been found to have a positive relationship with general cognitive function as well as time and risk preferences (Frederick, 2005) and research has indicated that people with higher numeracy have better comprehension of comparative information (Hibbard, Peters, Dixon, & Tusler, 2007) and better SAT scores (Peters et al., 2006).

Crystallized intelligence. We measured crystallized intelligence with three standard tasks. The *Shipley Vocabulary* task (Zachary, 1986) is a 40-item multiple-choice synonym vocabulary test, and our version was adapted from CREATE’s Common Core Battery of Measures (Czaja, Charness, Dijkstra, et al., 2006; Czaja, Charness, Fisk, et al., 2006). Similarly, *Antonym Vocabulary* (Salthouse, 1993) measured vocabulary using 10 multiple-choice antonym selection items. Finally, the WAIS-III *Information Task* (Wechsler, 1997), as adapted by CREATE (Czaja, Charness, Dijkstra, et al., 2006; Czaja, Charness, Fisk, et al., 2006), asked participants 28 open-ended general knowledge questions about events, objects, places, and people.

Inhibitory control. We measured inhibitory control using web versions of three standard tasks as developed by Lumos Labs (www.lumosity.com). The *Stroop Task* (Stroop, 1935)
measured differences in reaction times between trials in which the name of a color word matched or did not match its font color. Similarly, the Flanker Task (Eriksen & Eriksen, 1974) measured differences in reaction times between trials in which the orientation of the central item was the same or different from the orientation of the flanking items. Finally, Spatial 1-back (Kane, Conway, Miura, & Colflesh, 2007) measured participants’ reaction times in reporting whether the spatial position of a ball in each trial was the same as its position in the previous trial. Although participants completed two trials of each inhibitory control task, we used their average performance due to the high reliability between the two measures.

3.4.2 Decision performance measures

We included three to five measures of each decision-making trait, again distributed across all four waves (see Table 2) and interspersed with both the cognitive measures and each other. Different measures of the same task were presented in fully counterbalanced order within each wave to control for order effects. Since no order or item effects were found for any decision-making measure, they will not be discussed any further. Importantly, performance on each task can be classified by the degree to which it conforms to normative, rational-economic models, as described below.

Temporal discounting was measured with five choice titrators (L. Green, Fry, & Myerson, 1994). Three of the titrators presented participants with a series of choices between a fixed smaller gift certificate today ($60, $55, and $100) and varying amounts of a larger gift certificate at a delayed time point (4, 3, and 12 months). The remaining titrators instead fixed the larger, future gift certificate ($75 and $115 in 3 months) and varied the amount of the gift certificate today, thus allowing participants to accelerate payment at the cost of receiving less money. The dependent variable for each titrator was the participant’s exponential annual discount factor as implied by their indifference point (i.e., the midpoint between preferring the earlier versus later payments). Using hyperbolic discounting rates gives similar results. Because nearly all participants were too impatient relative to the economic standard, larger discount factors (closer to one), indicating more patient preferences, were coded as better.
Loss aversion was also measured with five choice titrators (Fehr & Goette, 2007). Each titrator presented participants with a series of choices indicating willingness to play each of a series of binary gambles with a 50% chance of winning some fixed amount ($6 or $20) and a 50% chance of losing some varying amount (between $0.50 to $7 in $0.50 increments or between $2 to $24 in $2 increments). Two of the titrators in the first wave were repeated in the fourth wave one year later without any change. We calculated loss aversion coefficients by dividing the gain amount by the loss amount at the indifference point (i.e., midpoint between where the participant switches from willing to play the gamble to not willing). Because a loss aversion coefficient equal to one is economically rational and anything else irrational, coefficients were reverse-coded so that larger values were better.

Anchoring was measured with two sets of three numerical estimation questions each (e.g., distance between New York and Cairo). In each set, one question was preceded by a high anchor question (e.g., “Is the distance between New York and Cairo less than or greater than 11300 miles?”), one by a low anchor (e.g., 1400 miles), and one by no anchor (i.e., just the estimate). Questions were counterbalanced with anchor condition in a Latin squares design. We calculated z-scored estimates by pooling responses across anchor conditions within question. We used the z-scored estimates for the two questions preceded by low anchors and reverse-coded, z-scored estimates for the two questions preceded by high anchors as our four dependent measures. Higher z-scores, corresponding to being less influenced by anchors, were coded as better.

Resistance to framing was measured with four scenarios offering choices between a risky option and a sure option, varying the framing of the options as gains or losses (Tversky & Kahneman, 1981). We used the classic Asian disease problem (e.g., number of lives saved or lost), as well as variants about potential layoffs (e.g., factories kept open or shut down), drought (e.g., acres of crops saved or lost), and bankruptcy (e.g., investments saved or lost). Each participant saw either the gain or loss version of each scenario, with one of each in the first and fourth waves. Resistance to framing was determined by two binary measures of whether choices for the pair of gain and loss scenarios in each wave were both risk-seeking or both risk-averse.
Inconsistent risk preference indicated succumbing to gain-loss framing and was coded as zero.

Financial and debt literacy were measured using a single six-question scale composed of three financial literacy questions (Lusardi & Mitchell, 2006) designed to assess knowledge of fundamental economic concepts, and three debt literacy questions (Lusardi & Tufano, 2009) designed to assess knowledge of compound interest and credit card debt. Each answer was coded as correct or not. A list of all questions can be found in the supporting materials online.

4 RESULTS

4.1 Preliminary Analysis

We first cleaned the data set using preplanned, standard procedures. We removed non-monotonic responses from the temporal discounting (1.2%) and loss aversion (1.9%) titrators since they represent participants who did not understand or attend to those tasks. There were no age differences in the proportion of non-monotonic titrator responses. We also removed exactly correct answers for the anchoring questions (4.3%), since anchors have no chance of affecting people who actively know the correct amounts. We then log-transformed all skewed variables (absolute skew greater than .8), standardized all variables, and removed outliers beyond 3.5 standard deviations (7 data points in total). Importantly, we coded all variables so that higher scores corresponded to better performance (note, however, that Table 3 shows the original coding for the inhibitory control measures such that smaller reaction time differences are better).

4.2 Overview

As outlined below, we follow procedures standard to the cognitive aging literature (e.g., Del Missier et al., 2011; Lindenberger, Mayr, & Kliegl, 1993; Salthouse et al., 2003) for analyzing complex relationships between age, cognitive capabilities, and other abilities. We

2 The percentage for anchoring includes a substantial number of participants who knew how many bones were in the adult human body (11.9%) and the year Beethoven was born (5.7%). Younger participants gave more exact answers (6.1%) than older participants (2.5%). Including these exact answers does not substantially impact results.
begin by reporting mean age differences for all measures and their correlations. We then characterize the cognitive capabilities measurement model by testing for convergent and discriminant validity, and showing measurement invariance between younger and older groups. We do the same for the decision-making variables and then combine them with the cognitive capabilities measurement model and age in a structural equation model to test the compensating capabilities hypothesis. We ran all analyses in Mplus (Muthén & Muthén, 2010) using both standard and bootstrapped estimation procedures (Preacher & Hayes, 2008; Shrout & Bolger, 2002). For the bootstrapped analyses, we drew 10,000 bootstrapped samples for each analysis and constructed confidence intervals for each parameter using the bootstrapped distributions. We report the significance levels for the bootstrapped analyses corresponding to the widest confidence interval not including zero, but standard analyses found similar results.

We used two standard indices to evaluate model fit. Root mean square error of approximation (RMSEA) is a measure of the difference between predicted and observed covariances, with values under .05 considered good and under .08 considered adequate (Browne & Cudeck, 1993; Steiger, 1990). The Bentler comparative fit index (CFI) indicates the relative improvement of the hypothesized model over the null or independent model (in which all variables are unrelated). Values of CFI above .90 are considered adequate and above .95 are considered good (Hu & Bentler, 1999). Both indices are penalized for model complexity and thus favor models that can more parsimoniously explain the observed covariance patterns. We also report the model chi-square for purposes of model comparison but do not interpret its significance due to our large sample size (Kline, 2010).

4.3 Step 1: Cognitive capabilities measurement model

Table 3 shows the mean scores for each cognitive measure for younger and older participants, as well as the pairwise correlations between the measures across both age groups. Different measures for each cognitive factor were significantly correlated with one another (rs =
.27 to .51 for fluid intelligence, .51 to .65 for crystallized intelligence, and .52 to .67 for inhibitory control; all ps < .001). To determine the validity of the cognitive capabilities measurement model, we conducted a confirmatory factor analysis (CFA) on the cognitive measures. As seen in the factor loadings in Table 4 and Figure 2, the three-factor model consisting of fluid intelligence (Gf), crystallized intelligence (Gc), and inhibitory control (IC) factors showed convergent validity, with significant loadings for all cognitive measures on their hypothesized factors. The model showed reasonable fit to the data with a CFI of .94 and a RMSEA of .076.\(^3\) Importantly, the three factors were significantly correlated (see Table 4 and Figure 2).

Table 4 also shows the factor loadings and fit statistics for two standard comparison models: (1) a one-factor model; and (2) a three-factor model in which the factors are forced to be uncorrelated. As Table 4 shows, both alternative models fit the data significantly less well than the hypothesized three-factor model with correlated factors (\(\chi^2\) difference tests, \(\chi^2(3) = 163.17\) and 645.26, respectively, both \(p < .0001\)). Therefore, even in the presence of significant inter-factor correlations, the hypothesized measurement model demonstrates discriminant validity.

4.3.1 Age differences for cognitive factors

Table 3 also shows that younger participants were significantly better at all measures of fluid intelligence and inhibitory control (all ts > 11, all ps < .0001) but significantly worse at all measures of crystallized intelligence (all ts > 3.78, all ps < .001). We investigated age differences on the underlying cognitive factors by adding paths from each cognitive factor to age (see bottom of Table 4). Compared to younger participants, older participants had significantly worse fluid intelligence (\(r = -.45, p < .0001\)) and inhibitory control (\(r = -.81, p < .0001\)), but had

\(^3\) Note that all models in Table 4 allowed for residual correlation between CRT and Numeracy. These measures have similar mathematical components so it is reasonable that they share unexplained variance. Omitting these residual correlations affects the fit of the model but not subsequent results.
better crystallized intelligence ($r = .48$, $p < .0001$). Importantly, the similar magnitudes of age effects on fluid and crystallized intelligence in opposite directions leaves open the possibility that older participants’ higher levels of crystallized intelligence offsets their lower levels of fluid intelligence.

4.3.2 Measurement invariance

Given the age differences on the cognitive factors, it is important to test for measurement invariance across younger and older participants (Kline, 2010; Vandenberg & Lance, 2000). That is, we require that the cognitive tasks measure the same underlying factors in the same ways for both samples. We tested for factor invariance using multiple-group CFA, which fits the measurement model simultaneously to the data from the younger and older groups. Table 5 shows the fit indices for successively more restrictive models. In model M1, we specified the same measurement model for both age groups, but all parameters were freely estimated within each group. M1 fit the data fairly well (RMSEA = .057, CFI = .950), hence we can conclude that the measurement model satisfies configural invariance (Kline, 2010), meaning that both groups showed the same general pattern of factor loadings across cognitive factors.

With one exception, our measurement model demonstrated metric invariance. When we compared model M1 to model M2, restricting the factor loadings to be equal across age groups for each cognitive task, M2 did not fit the data as well as M1, and a χ^2 difference test verified the difference in model fits ($\Delta \chi^2(8) = 25.01, p < .01$). This discrepancy appeared to be due to a difference in the loading of Raven’s Progressive Matrices. When we compared model M1 to an alternative model, M2’, with equal factor loadings on all but Raven’s Progressive Matrices, M2’ did not fit the data significantly differently from model M1 ($\Delta \chi^2(7) = 13.79, p = .06$). This means that the reliability of the Raven’s Progressive Matrices task was different between younger and older groups. However, relaxing this restriction did not change the results of subsequent analyses, so we maintain complete metric invariance in the cognitive capabilities measurement model.

We next compared model M2’ to model M3, in which factor variances and covariances
were restricted to be equal across age groups. Model M3 fit about as well as model M2' ($\Delta \chi^2(4) = 3.19, ns$), so we can conclude that the factor variances and covariances are equivalent across age groups. Finally, we compared model M3 to model M4, in which means for each cognitive task were restricted to be equal across age groups. Model M4 provided much worse fit to the data ($\Delta \chi^2(11) = 383.41, p < .0001$), as expected, meaning that younger and older participants performed significantly differently on the cognitive tasks.

4.4 Step 2: Decision-making measurement model

Table 6 shows the mean scores for each decision performance measure for each age group, as well as the correlations between measures within a given task category. Different measures for temporal discounting (rs = .33 to .62, all ps < .0001), loss aversion (rs = .41 to .82, all ps < .0001), financial literacy (Spearman rs = .07 to .40, all ps < .001 except for correlations with the third question), and debt literacy (Spearman rs = .15 to .33, all ps < .01) were significantly correlated with one another. However, different measures for resistance to framing (r = -.05, ns) and anchoring (rs = 0 to .15, two ps < .05 and others ns) were not significantly correlated, suggesting that neither reliably measured an underlying decision-making trait. As a result, we dropped anchoring and resistance to framing and in subsequent analyses.

We next conducted a CFA on the remaining, reliable decision-making measures for temporal discounting, loss aversion, financial literacy, and debt literacy. As seen in the factor loadings in Figure 3 and Table 7, all four decision-making factors showed convergent validity. The four-factor model showed good fit with a RMSEA of .041 and a CFI of .939.4 Table 7 also shows significant correlations between the temporal discounting, financial literacy, and debt

4 The decision-making factor model allows residual correlations between the first, second and third temporal discounting tasks and between the first and second loss aversion tasks. Each pair of measures used nearly identical methods so it is reasonable that they share unexplained variance. Omitting these residual correlations affects model fit but not subsequent results.
literacy factors ($r_s = .39$ to $.75$, all $p < .001$), whereas loss aversion was only correlated with debt literacy ($r = .25$, $p < .01$).5

--- Insert Figure 3 HERE ---

--- Insert Table 7 HERE ---

4.4.1 Age differences for decision-making factors

Table 6 shows that although not all age differences in performance on the decision-making tasks were significant, older participants tended to make better decisions. They were significantly and substantively more accurate on the financial and debt literacy questions and somewhat more patient on the temporal discounting questions. We further investigated age differences by adding paths from each decision-making factor to age. This analysis revealed that, compared to younger participants, older participants were marginally more patient ($r = .12$, $p < .10$), somewhat more loss neutral ($r = .09$, $p = .12$), and much better at financial ($r = .47$, $p < .001$) and debt literacy ($r = .24$, $p < .001$). Older participants were also directionally better on each measure of anchoring and framing, but most of these effects did not reach statistical significance. In sum, older participants in our panel were generally better decision-makers than younger participants.

As with the cognitive measurement model, we tested whether the decision-making tasks measured the same underlying factors for both younger and older participants using multiple-group CFA. Table 8 shows model fits and difference tests for each step of this procedure. Models DM1 and DM2 showed that the decision-making factors satisfy configural invariance and metric invariance, respectively. Model DM3 showed that factor covariances were equivalent across age groups. Model DM4 and DM4' showed that factor variances were equivalent across age groups for all decision-making factors except for financial literacy. In short, the decision-making tasks

5 The correlation between financial and debt literacy ($r = .75$, $p < .001$) raised concerns of potential multicollinearity. However, when we compared the four-factor model with a three-factor model in which financial and debt literacy were combined into a single factor, model fits were worse (RMSEA = .041, CFI = .938). A χ^2 difference test revealed that the three-factor model fit significantly worse than the four-factor model, $\chi^2(3) = 9.42$, $p = .02$.
measured the same underlying decision-making factors for younger and older groups, with the minor exception that financial literacy was measured with more noise in the older group.

4.5 Step 3: Relationship between cognitive capabilities, decision performance, and age

Having established divergent and convergent validity and reasonable measurement invariance for both the cognitive capabilities and decision performance factors, we now examine the relationships between these factors and age. First, we explored simple relationships between cognitive capabilities and decision performance by combining the cognitive and decision-making models and adding paths between all decision-making factors to all cognitive factors in a structural equation model (SEM). An SEM is a combination of path analysis with factor analysis, concurrently estimating four multiple regressions of the decision-making factors on the cognitive capability factors while simultaneously estimating the factor structures for all cognitive and decision-making variables. In this and all subsequent SEM analyses, we included demographic controls for gender, education, and income in order to remove any possible confounding effects due to underlying demographic differences between the younger and older groups. Models without demographic controls were qualitatively similar, although loss aversion results were somewhat less significant.

Table 9 shows that, as predicted, temporal discounting, financial literacy, and debt literacy were all positively related to both fluid and crystallized intelligence. Loss aversion, on the other hand, was not related to either fluid intelligence or crystallized intelligence but was negatively related to inhibitory control. Financial literacy was also negatively related to inhibitory control. We provide some possible explanations for these unpredicted relationships below, when discussing the mediation results.

4.5.1 Mediation analysis

In the final stage of analysis, we used the multiple mediation approach outlined in Figure
1 to test whether the cognitive capabilities could help explain the observed age differences in decision performance. Importantly, we were able to simultaneously estimate and test all direct and indirect effects within a single SEM framework. This relatively new way to conduct mediation analyses allows us to estimate indirect effects even if the total effect of age on a given factor is not significant (Zhao et al., 2010). That is, cognitive capabilities (e.g., inhibitory control) can be significant mediators of decision performance (e.g., loss aversion) even if there is no significant total effect of age.

Table 10 shows the standardized coefficients of the relevant paths in the SEM mediation analysis. Recall that the total effect of age (c in Figure 1) is equivalent to the path from age to the decision-making factor in a model without mediators. The significance of an indirect effect of age tests whether a given cognitive capability mediates the effect of age on that decision-making factor; it is equivalent to the product (aᵢ × bᵢ) of the path from age to the cognitive capability (aᵢ) and the path from the cognitive capability to the decision-making factor (bᵢ). Finally, the direct effect of age (c') is the path from age to the decision-making factor after all indirect effects have been accounted for in the model.

Recall that Figure 1 provided the framework for our compensating capabilities hypothesis of age differences in decision performance. In this model, part of any age difference is due to competing and possibly compensating indirect effects of age via fluid and crystallized intelligence, where older participants’ well-documented lower levels of fluid intelligence may be offset by their higher levels of crystallized intelligence. In Table 10, compensation would be shown by fluid and crystallized intelligence having negative and positive indirect effects, respectively. This pattern, and in particular the similar magnitudes and opposite direction indirect effects, is evident for three of the four decision-making factors.

For example, the indirect effects of age on temporal discounting via fluid and crystallized intelligence perfectly exemplified the predictions of the compensating capabilities hypothesis. In standard mediation terms, fluid intelligence suppressed the relationship between age and
discounting, whereas crystallized intelligence mediated it. In this case, the opposing indirect
effects of fluid and crystallized intelligence perfectly offset each other. That is, older
participants’ higher levels of crystallized intelligence compensated for their lower levels of fluid
intelligence, preventing them from making more impatient intertemporal choices than their lower
levels of fluid intelligence would otherwise dictate.

A similar set of relationships was found for financial literacy and debt literacy. Here,
older participants’ higher levels of crystallized intelligence again offset their higher levels of
fluid intelligence, fully for financial literacy and partially for debt literacy. However, the
compensation pattern for both types of literacy was further complicated by the presence of
inhibitory control as another marginally negative mediator. That is, although lower levels of fluid
intelligence were balanced by higher levels of crystallized intelligence, older participants were
additionally worse at financial and debt literacy due to their lower levels of inhibitory control. As
a result, the direct effects of age on financial and debt literacy in the mediated model were
actually higher than their respective total age effects. In other words, the net mediating effect of
the cognitive factors was to suppress positive age effects. The advantage older participants hold
over younger participants in financial and debt literacy would be even higher were it not for
older participants’ lower levels of fluid intelligence and inhibitory control.

Finally, as anticipated by the simple SEM results, we found that compensating
capabilities did not explain age relationships with loss aversion. In fact, neither fluid nor
crystallized intelligence was correlated with loss aversion. Instead, inhibitory control served as a
marginally positive mediator of the effect of age on loss aversion. This result is particularly
counterintuitive because this positive indirect effect is the product of two negative effects—
namely, older participants’ choices were less loss averse precisely because they have worse
inhibitory control. The fact that getting worse at something may in fact contribute to better
decisions suggests that specific features of the loss aversion measures may be responsible. One
possibility is the fact that all five loss titration tasks started with series of fairly attractive
gambles with much greater gains than losses (e.g., even odds of losing $0.50 or gaining $6).
Saying “yes” to a number of these gambles may make it the prepotent response to continue choosing “yes” for subsequent gambles with larger potential losses (e.g., even odds of losing $6 or gaining $6). A failure to inhibit prepotent responses here would cause participants to act as if they were behaving less loss averse. Further research on this relationship should utilize different formats to measure loss aversion.

4.6 Summary of results

In sum, our older participants performed as well as or better than younger participants on all measured decision-making tasks. We found that fluid intelligence, crystallized intelligence, and inhibitory control partially mediated the effect of age on performance for four stable, trait-like decision-making tasks. In particular, we found support for the compensating capabilities hypothesis of the effect of age on temporal discounting, financial literacy, and debt literacy: Older participants’ higher levels of crystallized intelligence offset their lower levels of fluid intelligence. Inhibitory control acted as an additional negative mediator of age effects on financial literacy and debt literacy, so that the direct effects of age were magnified after controlling for all three mediating cognitive capabilities. This net suppression effect suggests that there is some component of these decision-making traits not captured by our set of cognitive capability measures, possibly domain-specific financial knowledge as opposed to the measured domain-general construct of crystallized intelligence. We discuss this further below.

5. DISCUSSION

The average age of the world’s population is rising rapidly, and the proportion of people older than 60 years will continue growing until at least 2050 (United Nations, 2002). This increasing number of older participants raises questions for researchers across many disciplines, including psychology and economics. Understanding how and how well older adults make decisions is crucial because they are faced with an increasing number of important choices related to their retirement finances and health care (Mather, 2006; Peters et al., 2000; Peters et
al., 2007; United Nations, 2002). Furthermore, as new laws increase the minimum retirement age, people remain professionally active later in life, with older adults holding many key leadership roles. Given their influence over the economy and society, this paper set out to explore whether older adults are better or worse decision-makers than younger adults. We hypothesized and found that any predictions of expected age differences in decision performance would be related to the competing contributions of fluid and crystallized intelligence to the task.

5.1 Cognitive Capabilities and Decision Performance

Our age effects on cognitive capabilities firmly replicated well-established findings in cognitive aging: Older participants had significantly worse fluid intelligence and inhibitory control but significantly better crystallized intelligence than younger participants (Salthouse, 2004, 2010). We also found relationships between the cognitive capabilities and decision performance consistent with previous research. Both fluid and crystallized intelligence were positively related to patience in temporal discounting as well as financial and debt literacy.

The positive relationship between intelligence and patience in temporal discounting is consistent with previous research showing a link between discounting and intelligence (de Wit, Flory, Acheson, McCloskey, & Manuck, 2007; Dohmen et al., 2010; Shamosh & Gray, 2008). In particular, de Wit and colleagues (2007) found that patience was positively related to both fluid and crystallized intelligence. Likewise, recent research has found positive relationships between financial literacy and some measures of fluid intelligence such as numeracy and number series (Banks, O’Dea, & Oldfield, 2010; McArdle, Smith, & Willis, 2009; Smith, McArdle, & Willis, 2010). Such measures were gathered as part of large national panels and did not include specific measures of crystallized intelligence. However, some researchers have argued that financial literacy should be also related to crystallized intelligence and found positive relationships with educational attainment (Delavande, Rohwedder, & Willis, 2008; Lusardi & Mitchell, 2011). We note that the positive relationship we found between crystallized intelligence and decision performance persisted even though we controlled for education.
The opposing age differences for fluid and crystallized intelligence with age, together with their positive relationships with decision performance, provided the underpinnings for our compensating capabilities hypothesis of how age differences in cognitive capabilities mediate age differences in decision performance. In particular, we found evidence for our hypothesis on temporal discounting, as well as financial and debt literacy. For these decision tasks, lower levels of fluid intelligence in older adults were related to lower decision performance, but higher levels of crystallized intelligence offset this negative age effect. For temporal discounting, crystallized intelligence perfectly offset differences in fluid intelligence, leading to no net age effects. The story was a little more complicated for financial and debt literacy: Here, higher levels of crystallized intelligence was not enough to fully offset lower levels of both fluid intelligence and inhibitory control, both of which had negative relationships with performance.

To the best of our knowledge, this paper represents the first attempt to examine the relationship between cognitive capabilities and loss aversion, and therefore the first to find that people with better inhibitory control were more loss averse. However, as previously discussed, this counterintuitive relationship may be due to the format of the decision task, and further research is necessary to explore its robustness. The negative relationship with inhibitory control was also contrary to our predictions based on Query Theory (Johnson et al., 2007), which suggests that people with better inhibitory control should be less susceptible to the endowment effect and loss aversion, as well as less impatient in temporal discounting. Future research exploring the relationship between executive function and Query Theory should include updating and shifting to cover the full range of executive functions.

5.2 Age Differences in Decision Performance

In general, our older participants showed equal or better decision performance relative to our younger participants, exhibiting greater patience in intertemporal choices and better financial and debt literacy. Older participants were also somewhat less loss averse, although this result did not reach standard levels of significance. On the other hand, our measures for anchoring and
resistance to framing did not correlate with each other, suggesting that neither can be considered a decision-making trait.

Our results on temporal discounting are in line with other studies showing that older adults are more patient (L. Green et al., 1994; Reimers, Maylor, Stewart, & Chater, 2009). However, other researchers (Read & Read, 2004) have found an inverted U-shaped relationship between age and impatience: Older participants (mean age of 75) were the least patient, while middle-aged participants (mean age of 44) were more patient than both older and younger participants (mean age of 25). Similarly, Souzou and Seymour (2003) found that patience increased until middle age before dropping in old age and Trostel and Taylor (2001) found that older participants (mean age of 80) were less patient. Although the positive relationship between age and patience found in the current paper and others (L. Green et al., 1994; Reimers et al., 2009) seem inconsistent with negative relationships found by the remaining studies (Read & Read, 2004; Souzou & Seymour, 2003; Trostel & Taylor, 2001), the discrepancies may be due to the average age of the older participants in each study. For instance, Green and colleagues’ (1994) older participants were close in age to their middle-aged participants, and Reimers and colleagues (2009) did not have meaningful data for people above 65. This argument also holds for the current study, in which the mean age for older participants was only 66. Thus, our older participants may be closer to the middle-aged participants of other studies in terms of their discounting behavior.

To the best of our knowledge, the current paper is the first to explicitly explore age differences in loss aversion as a function of cognitive skills. However, age differences have been studied on related tasks in which loss aversion may play a role. For example, most studies of the Iowa gambling task (Kovalchik et al., 2005; MacPherson, Phillips, & Della Sala, 2002; Wood, Busemeyer, Koling, Cox, & Davis, 2005), framing effects (Mayhorn et al., 2002; Roennlund et al., 2005), and the endowment effect (Kovalchik et al., 2005) find no age-related differences. These findings are consistent with the present study’s finding that older participants were insignificantly less loss averse.
Our finding that older participants were better at financial and debt literacy are consistent with research by Delavande and colleagues (2008). However, other research has found a negative relationship between debt literacy and age (Lusardi & Tufano, 2009) and an inverted U-shape relationship between financial literacy and age (Lusardi & Mitchell, 2011). These conflicting results are most likely due to differences between samples, and we are confident that the underlying compensating capabilities hypothesis is applicable to these ostensibly opposing results as well.

5.2.1 Decision Performance over the Life Span

As one possible explanation for discrepancies among findings, we note that the compensating capabilities hypothesis also makes predictions for decision performance across the life span. Recall that we intentionally examined two points in the age distribution, omitting participants between 30 and 59 to increase the power of our analysis. In addition, the median age among the older group was only 65, while the oldest participant was only 82. Therefore, our sample, despite being at least as geographically and demographically diverse as those used by the majority of studies in the literature, does not allow us to trace decision performance across the entire life span. However, others have examined differences in cognitive capabilities across the life span, and we can leverage this knowledge to infer relationships with decision performance for unmeasured age groups. Specifically, because crystallized intelligence tends to plateau while fluid intelligence is even lower for adults aged 70 and above (Salthouse, 2004, 2010), compensating capabilities suggests that the relationship between age and decision performance will be characterized by a single-peaked function reminiscent of Simonton’s (1997) career productivity curve. The exact nature of this function will depend on both the relative importance of crystallized and fluid intelligence to the task, as well as their levels at each age.

We can make rough extrapolations to the unstudied age ranges if we assume, as our data supports, that the roles of fluid and crystallized capabilities remain constant across the life span. Our compensating capabilities hypothesis suggests that crystallized intelligence will not be able to protect adults from the effects of further decreases in fluid intelligence; consequently, decision
performance may potentially decrease for adults aged 70 and above. Figure 4 presents an approximate picture, using our estimated relationships between age, cognitive capability, and decision performance on temporal discounting and financial and debt literacy, and extrapolating to other ages using Salthouse’s (2004) measures of fluid and crystallized intelligence.

Importantly, an inverse-U shape relationship with age is evident for all three decision tasks, with peaks in the mid- to late 50s. This shape is consistent with the age pattern other research has found in various domains (Agarwal et al., 2010; Read & Read, 2004; Simonton, 1997). For example, Agarwal and colleagues (2010) hypothesized such a pattern for financial decision making over the life span and found support across 10 different domains using data from nationally-representative polls collected for broader purposes. Although the representativeness of their data strengthens the external validity of their findings, they did not measure any cognitive capabilities. Therefore, while their work is consistent with the compensating capabilities hypothesis, neither they nor other researchers have provided direct evidence that simultaneously relates these cognitive capabilities to decision performance in different age groups.

5.2.2 Other Demographic Effects

Although some differences between our findings with those of previous research may be attributable to differences in the age ranges of our older participants, there may exist additional discrepancies between our sample and those in other studies. For example, our older participants may on average have more years of education and income, two variables that have been linked to higher scores on cognitive tests (e.g., Ceci & Williams, 1997; Salthouse, 2010). We therefore urge caution in generalizing our findings of age differences in decision performance to other samples. Our goal was instead to test the compensating capabilities model.

5.3 What exactly offsets age-related declines?

Although our results indicate that crystallized intelligence is the cognitive capability
older adults have that helps offset their lower levels of other capabilities, our measures of crystallized intelligence may not be the whole story. Recall that we assessed crystallized intelligence using two tasks that measured vocabulary and one that measured general knowledge. Although these tasks may affect performance on linguistic tests or crossword puzzles (Hambrick et al., 1999), it seems unlikely that they directly affect decision performance in tasks such as intertemporal choices and financial and debt literacy. However, vocabulary skill and general knowledge may nonetheless be correlated with experience and knowledge that can facilitate wise and forward-looking decision making. Because it is hard to assess domain-specific knowledge across many domains, it seems reasonable to use crystallized intelligence as a stand-in for more specific bodies of knowledge when examining multiple domains. Nonetheless, it is rather remarkable that these measures work as well as they do, and it would be desirable for future research to disentangle the effect of domain-general versus domain-specific knowledge and experience.

Another possibility is that crystallized intelligence could be correlated with a related, but unmeasured construct. For example, Socioemotional Selectivity Theory (SST) posits that older adults, who perceive a limited time left in their life, try to optimize their experiences by maintaining positive emotions and by focusing their attention on positive information and stimuli (Carstensen, 2006; Carstensen, Isaacowitz, & Charles, 1999; Mather & Carstensen, 2005). For example, older adults prefer to seek positive and avoid negative stimuli (Isaacowitz, Allard, Murphy, & Schlangel, 2009) and have better memory for positive information (Charles, Mather, & Carstensen, 2003). Older adults may also adapt to declines in cognitive resources by becoming increasingly selective about how they expend their effort (Hess, 2000; Hess, Rosenberg, & Waters, 2001). Similarly, Dynamic Integration Theory (Labouvie-Vief, 2003) suggests that age-related differences in positivity bias arise because positive information is less resource demanding than negative information.

Mather (2006) argues that these differences in emotional processes may provide an explanation for why there are age differences for some types of decisions but not others. For
example, positivity bias has been used to explain age-related differences in temporal discounting as well as decision-making tasks related to loss aversion (Carstensen, 2006; Carstensen et al., 1999; Mather & Carstensen, 2005). In related research, Samanez-Larkin and colleagues (2007) found no age differences in neural activation during gain anticipation but a relative reduction in activation during loss anticipation. Although these differences in positivity bias may be important for understanding decision making in older adults, they present a challenge relative to constructs such as fluid and crystallized intelligence and inhibitory control, as there exists no standard, domain-independent battery of measures to assess positivity bias.

5.4 Extension to other Decision Measures

We set out to measure performance on a broad set of economically important decision-making traits and believe that it is desirable to examine an even larger set of measures. Other researchers have begun to explore the relationships between cognitive capabilities and some of these other decision performance variables, including risk aversion (Dohmen et al., 2010; Henninger, Madden, & Huettel, 2010), retirement savings (Banks et al., 2010; McArdle et al., 2009), and correctly using credit cards and other sources of borrowing (Agarwal et al., 2010; Agarwal & Mazumder, 2010). However, most of these studies have collected only a small subset of cognitive capability measures, if any, which limits how well they can establish the validity and reliability of their cognitive capabilities and hence the reliability of their relationships with decision performance. Of these studies, the one with the most cognitive measures (Henninger, et al., 2010) examined the effects of processing speed and memory on risk aversion, but did not consider potential positive effects of cognitive capabilities in which older adults are better.

Two additional papers recently explored the relationships among age, cognitive capabilities, and general decision-making capability (DMC) as measured by the adult DMC scale (Bruine de Bruin et al., 2011; Del Missier et al., 2011). Bruine de Bruine and colleagues (2011) considered the effects of cognitive capabilities in which older adults are better, but did so without attempting to directly measure such capabilities. They instead used age as a proxy for any
capabilities that increase with age, after partialling out the effect of fluid intelligence. However, this orthogonalization of the variables did not allow them to specifically identify a compensating role for crystallized intelligence. Del Missier and colleagues (2011) complemented these results by collecting measures for a different set of cognitive capabilities. They showed that three core executive functions affect different aspects of the DMC differently. Future research in this area would benefit from combining a broad set of cognitive capability measures, including multiple measures for fluid and crystallized intelligence, with an even broader set of decision-making traits.

Our use of multiple measures of each decision-making trait allowed us to assess reliability and increased the robustness of our results by using only the shared variance for each reliably measured task. However, further work should make use of an even larger and more diverse set of measures to assess each decision-making trait. In addition, while we attempted to include measures of anchoring and resistance to framing in our study, they proved to unreliably measure underlying individual differences. This lack of reliability may be because these tasks are too context specific or may reflect insufficient power. An example of how to potentially overcome these problems may lie in the resistance to framing component of the adult DMC scale (Bruine de Bruin et al., 2007, 2011), which includes 14 pairs of positively and negatively framed items including both Asian Disease style problems and attribute framing items (e.g., 20% fat or 80% lean).

Our analysis draws attention away from age per se as a predictor of performance and focuses instead on underlying capabilities. This distinction is important as there are many determinants of fluid and crystallized intelligence other than age, so research that examines the effects of age by itself may not clearly identify the factors leading to differences in performance. For example, crystallized intelligence is strongly determined by education and life experiences, and therefore differences in education and life experience may appear to be differences in age (what are sometimes called “cohort effects”). If one looks only at age, one might attribute increases in performance to the wrong variable, even after controlling for years of education.
Data that looks at longitudinal samples, although difficult to gather, might be very useful in further teasing apart these effects.

5.5 Cross-Sectional versus Longitudinal Studies

Although there are clear advantages to using longitudinal studies, given recent controversy over the role of cross-sectional studies of mediators of age effects (Lindenberger, von Oertzen, Ghisletta, & Hertzog, 2011), it is worth examining the potential tradeoffs between cross-sectional and longitudinal methods. For example, although longitudinal studies rule out cohort effects, they often follow a single cohort for a shorter period of years than the 30 year range we have in our sample. This raises questions about whether their results generalize to other cohorts and whether the effects hold over longer periods. Longitudinal studies also have to carefully control for potential confounds due to retesting effects and selective attrition (Salthouse, 2010). Ideally, future work could employ cross-sectional and longitudinal data. While such work would be resource intensive, we believe that the use of web-based assessment, may make it more viable.

6. CONCLUSION

Lay beliefs about age and decision performance are conflicting. One belief sees older people as wiser; another sees them as suffering from deteriorating decision skills. The compensating capabilities hypothesis suggests that there is not only truth to both beliefs, but proposes a mechanism that may help identify when each operates. In our study, we found that older people were somewhat better decision-makers than younger people. However, this improved performance was partly a result of older people’s higher levels of crystallized intelligence offsetting lower levels of fluid intelligence. Having greater experience and acquired knowledge from a lifetime of decision making may have provided older people with another way to make good decisions.

Although it is quite clear that more research is required, the compensating capabilities
hypothesis has important implications for matching task environments to decision-makers. For
decision tasks that rely heavily on processing new information, it is likely that the negative
effects of aging will outweigh its positive effects relatively early in life. On the other hand, if the
task relies on recognizing previously learned patterns in a stable environment, age may be an
advantage and convey wisdom. Finally, the compensating capabilities hypothesis may suggest
ways of modifying a decision task. To minimize the impact of declining fluid cognitive
capabilities, task designers should supplement internal with external memory to alleviate
processing loads for older decision-makers. To maximize the compensatory role of crystallized
intelligence, task designers should provide relevant experience with the task or analogies to
similar tasks in which they have more experience, akin to providing a more familiar context for
the Wason selection task (Cosmides, 1989). Finally, in addition to suggesting changes in the
task, this research suggests the strong prediction that increases in fluid intelligence produced by
training may well result in increases in decision performance. This possibility deserves further
empirical exploration.
Acknowledgments

This research was supported by National Institute of Aging Grant 5R01AG027934. We thank audience members at the Society of Judgment and Decision Making annual meeting and Columbia’s Cognitive Neuroscience Seminar, Dan Bartels, Isaac Dinner, Bernd Figner, Dave Hardisty, Jing Qian, Tim Salthouse, Eric Schoenberg, Yaacov Stern, and Liza Zaval for helpful comments; Marie Chesaniuk, Hiroki Kotabe, Seoungwoo Lee, and Shu Sun for help with data collection; Rachel Meng and Margaret Lee for proofreading an earlier version of the paper; Jon Westfall for technical assistance; and Mark Heitman for SEM advice.
REFERENCES

Figure 1. Compensating competencies hypothesis of age differences in decision performance.

\[a_{Gc} \times b_{Gc} > 0 \]
Positive mediation
(Age is a benefit)

\[a_{Gf} \times b_{Gf} < 0 \]
Negative mediation
(Age is a detriment)
Figure 2. Cognitive competencies measurement model: Factor loadings and inter-factor correlations.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Gf</th>
<th>Gc</th>
<th>Inhibitory Control</th>
<th>Stroop</th>
<th>Flanker</th>
<th>Spatial 1-back</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raven's Letter Series</td>
<td>.77***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letter Series</td>
<td>.62***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number Series</td>
<td>.59***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRT</td>
<td>.57***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numeracy</td>
<td></td>
<td>.53***</td>
<td>-.32***</td>
<td>.80***</td>
<td>.78***</td>
<td>.85***</td>
</tr>
<tr>
<td>Synonym</td>
<td></td>
<td></td>
<td>.74***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antonym</td>
<td></td>
<td></td>
<td>.85***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Info</td>
<td></td>
<td></td>
<td>.61***</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3. Decision-making factor loadings and inter-factor correlations.

Note: Tasks in italics were run in the fourth wave, one year after the first wave. *** < .001
Figure 4. Decision performance relative to 21-year-olds over the life course using our estimated relationships and extrapolated using data from Salthouse (2004).

Note: These curves do not include the effects of inhibitory control.
Table 1. Percentage of respondents in younger and older adult sample in each socioeconomic category.

<table>
<thead>
<tr>
<th></th>
<th>Young</th>
<th>Old</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent female</td>
<td>67.1</td>
<td>64.4</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No degree</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>High school diploma</td>
<td>33.5</td>
<td>24.5</td>
</tr>
<tr>
<td>Associate degree, occupational</td>
<td>2.3</td>
<td>6.8</td>
</tr>
<tr>
<td>Associate degree, academic</td>
<td>9.3</td>
<td>8.0</td>
</tr>
<tr>
<td>Bachelor's degree</td>
<td>39.9</td>
<td>33.1</td>
</tr>
<tr>
<td>Master's degree</td>
<td>12.7</td>
<td>17.8</td>
</tr>
<tr>
<td>Professional degree</td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Doctoral degree</td>
<td>1.2</td>
<td>6.8</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than $19,999</td>
<td>20.9</td>
<td>6.3</td>
</tr>
<tr>
<td>$20,000 - $34,999</td>
<td>16.9</td>
<td>24.4</td>
</tr>
<tr>
<td>$35,000 - $49,999</td>
<td>17.4</td>
<td>23.1</td>
</tr>
<tr>
<td>$50,000 - $99,999</td>
<td>30.8</td>
<td>38.1</td>
</tr>
<tr>
<td>$100,000 - $199,999</td>
<td>11.1</td>
<td>7.5</td>
</tr>
<tr>
<td>Greater than $200,000</td>
<td>2.9</td>
<td>0.6</td>
</tr>
</tbody>
</table>

N 173 163
Table 2. All cognitive and decision-making measures.

<table>
<thead>
<tr>
<th>Category</th>
<th>Task</th>
<th>Number of Measures or Items</th>
<th>Wave(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision Making</td>
<td>Resistance to anchors</td>
<td>4 (2 low and 2 high)</td>
<td>1, 4</td>
</tr>
<tr>
<td></td>
<td>Discounting</td>
<td>5 titrators</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td></td>
<td>Loss aversion</td>
<td>5 titrators</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td></td>
<td>Resistance to framing</td>
<td>4 items (2 pairs)</td>
<td>1, 4</td>
</tr>
<tr>
<td></td>
<td>Financial literacy</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Debt literacy</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Fluid Intelligence</td>
<td>Raven’s Progressive Matrices</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Letter Series</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Number Series</td>
<td>6 (adaptive)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cognitive Reflection Test</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Numeracy</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Crystallized Intelligence</td>
<td>Shipley’s Vocabulary</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Antonym Vocabulary</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WAIS Information</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>Inhibitory Control</td>
<td>Stroop Task</td>
<td>2 trials, 2 minutes each</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Flanker Task</td>
<td>2 trials, 45 seconds each</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Spatial 1-Back</td>
<td>2 trials, 2 minutes each</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 3. Means as a function of age group and between-measure correlations across both age groups for all cognitive measures.

<table>
<thead>
<tr>
<th>Task</th>
<th>Means</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Young</td>
<td>Old</td>
</tr>
<tr>
<td>Raven’s Progressive Matrices</td>
<td>8.15</td>
<td>5.17</td>
</tr>
<tr>
<td>Letter Series</td>
<td>10.36</td>
<td>9.50</td>
</tr>
<tr>
<td>Number Series</td>
<td>12.0</td>
<td>10.1</td>
</tr>
<tr>
<td>Cognitive Reflection Test</td>
<td>1.23</td>
<td>0.98</td>
</tr>
<tr>
<td>Numeracy</td>
<td>8.88</td>
<td>8.36</td>
</tr>
<tr>
<td>Shipley’s Vocabulary</td>
<td>22.60</td>
<td>30.65</td>
</tr>
<tr>
<td>WAIS Information</td>
<td>19.76</td>
<td>21.46</td>
</tr>
<tr>
<td>Spatial 1-Back</td>
<td>1.11</td>
<td>1.59</td>
</tr>
</tbody>
</table>

Note: Higher values correspond to better performance for all values except for the three inhibitory control tasks (Stroop, Flanker and Spatial 1-back). All age differences are significant at \(p < .01 \) or better, except for CRT and numeracy, which are significant at \(p < .05 \). All correlations above .11 are significant at least at \(p < .05 \) and above .14 at least at \(p < .01 \). Correlations between cognitive measures in the same competency group are shown in bold.
Table 4. Standardized factor loadings, model fits, and inter-factor correlations in the three-factor cognitive measure model and alternative models.

<table>
<thead>
<tr>
<th>Task</th>
<th>Three-factor correlated</th>
<th>Three-factor uncorrelated</th>
<th>One-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gc</td>
<td>Gc</td>
<td>IC</td>
</tr>
<tr>
<td>Raven’s Progressive Matrices</td>
<td>.77***</td>
<td>.78***</td>
<td>.53***</td>
</tr>
<tr>
<td>Letter Series</td>
<td>.62***</td>
<td>.61***</td>
<td>.33***</td>
</tr>
<tr>
<td>Number Series</td>
<td>.59***</td>
<td>.59***</td>
<td>.39***</td>
</tr>
<tr>
<td>Cognitive Reflection Test</td>
<td>.55***</td>
<td>.55***</td>
<td>.30***</td>
</tr>
<tr>
<td>Numeracy</td>
<td>.57***</td>
<td>.57***</td>
<td>.27***</td>
</tr>
<tr>
<td>Shipley’s Vocabulary</td>
<td>.74***</td>
<td>.75***</td>
<td>-.24***</td>
</tr>
<tr>
<td>Antonym Vocabulary</td>
<td>.85***</td>
<td>.84***</td>
<td>-.21***</td>
</tr>
<tr>
<td>WAIS Information</td>
<td>.61***</td>
<td>.60***</td>
<td>.01</td>
</tr>
<tr>
<td>Stroop Task</td>
<td>.80***</td>
<td>.83***</td>
<td>.77***</td>
</tr>
<tr>
<td>Flanker Task</td>
<td>.78***</td>
<td>.76***</td>
<td>.77***</td>
</tr>
<tr>
<td>Spatial 1-Back</td>
<td>.85***</td>
<td>.84***</td>
<td>.86***</td>
</tr>
</tbody>
</table>

Fit Indices

<table>
<thead>
<tr>
<th>Fit Indices</th>
<th>Degrees of Freedom</th>
<th>χ²</th>
<th>RMSEA</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degrees of Freedom</td>
<td>40</td>
<td>117.15</td>
<td>.076</td>
<td>.940</td>
</tr>
<tr>
<td>χ²</td>
<td>43</td>
<td>280.32</td>
<td>.128</td>
<td>.816</td>
</tr>
<tr>
<td>RMSEA</td>
<td>43</td>
<td>762.41</td>
<td>.204</td>
<td>.533</td>
</tr>
</tbody>
</table>

Inter-factor Correlations

<table>
<thead>
<tr>
<th>Inter-factor Correlations</th>
<th>Fluid intelligence (Gf)</th>
<th>Crystallized intelligence (Gc)</th>
<th>Inhibitory control (IC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>.35***</td>
<td>-.32***</td>
</tr>
<tr>
<td>Correlation with age</td>
<td>-</td>
<td>-.45***</td>
<td>-.46***</td>
</tr>
</tbody>
</table>

Note. Age correlations were run in models that added paths from each factor to age. *** p < .01
<table>
<thead>
<tr>
<th>Model</th>
<th>d.f.</th>
<th>χ^2</th>
<th>RMSEA</th>
<th>CFI</th>
<th>$\Delta \chi^2 / \Delta \text{d.f.}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1: No constraints</td>
<td>80</td>
<td>123.17</td>
<td>.057</td>
<td>.950</td>
<td>-</td>
</tr>
<tr>
<td>M2: M1 + Equal factor loadings across age groups</td>
<td>88</td>
<td>148.18</td>
<td>.064</td>
<td>.930</td>
<td>25.01/8, $p < .01$</td>
</tr>
<tr>
<td>M2': M1 + Equal factor loadings except for Raven's</td>
<td>87</td>
<td>136.96</td>
<td>.058</td>
<td>.942</td>
<td>13.79/7, $p > .05$</td>
</tr>
<tr>
<td>M3: M2' + Equal factor variances and covariances</td>
<td>91</td>
<td>140.15</td>
<td>.057</td>
<td>.943</td>
<td>3.19/4, $p > .52$</td>
</tr>
<tr>
<td>M4: M3 + Equal means</td>
<td>102</td>
<td>523.56</td>
<td>.157</td>
<td>.513</td>
<td>383.41/11, $p < .0001$</td>
</tr>
</tbody>
</table>

Note: χ^2 difference tests for each model in the rightmost column are relative to the model above it, except for model M2', which is compared to model M1.
Table 6. Means as a function of age group and between-measure correlations across both age groups for all decision-making performance measures.

<table>
<thead>
<tr>
<th>Task</th>
<th>Young</th>
<th>Old</th>
<th>(p(\text{old} \neq \text{young}))</th>
<th>$60, 4m</th>
<th>$75, 3m</th>
<th>$55, 3m</th>
<th>$115, 3m</th>
<th>$100, 12m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discounting $60, 4 months</td>
<td>0.43</td>
<td>0.48</td>
<td>†</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discounting $75, 3 months</td>
<td>0.45</td>
<td>0.54</td>
<td>**</td>
<td>.62***</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discounting $55, 3 months</td>
<td>0.44</td>
<td>0.46</td>
<td>(Ns)</td>
<td>.68***</td>
<td>.56***</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discounting $115, 3 months</td>
<td>0.54</td>
<td>0.56</td>
<td>(Ns)</td>
<td>.37***</td>
<td>.51***</td>
<td>.40***</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Discounting $100, 12 months</td>
<td>0.70</td>
<td>0.72</td>
<td>(Ns)</td>
<td>.34***</td>
<td>.37***</td>
<td>.33***</td>
<td>.50***</td>
<td>-</td>
</tr>
<tr>
<td>Loss Aversion $6a</td>
<td>2.56</td>
<td>2.56</td>
<td>(Ns)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss Aversion $20a</td>
<td>2.34</td>
<td>2.25</td>
<td>(Ns)</td>
<td>.64***</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss Aversion $6b</td>
<td>2.69</td>
<td>2.46</td>
<td>(Ns)</td>
<td>.65***</td>
<td>.47***</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss Aversion $20b</td>
<td>2.80</td>
<td>2.68</td>
<td>(Ns)</td>
<td>.53***</td>
<td>.41***</td>
<td>.82***</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Loss Aversion $20c</td>
<td>2.81</td>
<td>2.81</td>
<td>(Ns)</td>
<td>.51***</td>
<td>.43***</td>
<td>.76***</td>
<td>.82***</td>
<td>-</td>
</tr>
<tr>
<td>Anchoring High 1</td>
<td>-0.24</td>
<td>0.25</td>
<td>***</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchoring Low 1</td>
<td>-0.09</td>
<td>0.09</td>
<td>(Ns)</td>
<td>.12*</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchoring High 2</td>
<td>-0.04</td>
<td>0.05</td>
<td>(Ns)</td>
<td>.15*</td>
<td>.00</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchoring Low 2</td>
<td>-0.09</td>
<td>0.09</td>
<td>(Ns)</td>
<td>.04</td>
<td>.11</td>
<td>.03</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Resistance to Framing 1</td>
<td>0.48</td>
<td>0.52</td>
<td>(Ns)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance to Framing 2</td>
<td>0.57</td>
<td>0.59</td>
<td>(Ns)</td>
<td>-.05</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Literacy 1</td>
<td>0.74</td>
<td>0.93</td>
<td>***</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Literacy 2</td>
<td>0.55</td>
<td>0.86</td>
<td>***</td>
<td>.40***</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Literacy 3</td>
<td>0.65</td>
<td>0.75</td>
<td>*</td>
<td>.21***</td>
<td>.21***</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debt Literacy 1</td>
<td>0.50</td>
<td>0.57</td>
<td>(Ns)</td>
<td>.21***</td>
<td>.23***</td>
<td>.19**</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Debt Literacy 2</td>
<td>0.37</td>
<td>0.52</td>
<td>**</td>
<td>.28***</td>
<td>.25***</td>
<td>.16**</td>
<td>.33***</td>
<td>-</td>
</tr>
<tr>
<td>Debt Literacy 3</td>
<td>0.10</td>
<td>0.17</td>
<td>†</td>
<td>.01</td>
<td>.12*</td>
<td>.12*</td>
<td>.22***</td>
<td>.15**</td>
</tr>
</tbody>
</table>

Note: For all variables but loss aversion, higher values represent better performance. Loss aversion coefficients were left as is, so values closer to one (smaller) are better. Anchor scores were standardized and averaged across questions. Tasks in italics were run in the fourth wave, one year after the first wave. † < .10, * < .05, ** < .01, *** < .001
Table 7. Standardized factor loadings and inter-factor correlations for the decision-making tasks.

<table>
<thead>
<tr>
<th>Task</th>
<th>Decision-making Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temporal Discounting</td>
</tr>
<tr>
<td>Discounting $60, 4 months</td>
<td>.48***</td>
</tr>
<tr>
<td>Discounting $75, 3 months</td>
<td>.64***</td>
</tr>
<tr>
<td>Discounting $55, 3 months</td>
<td>.55***</td>
</tr>
<tr>
<td>Discounting $115, 3 months</td>
<td>.75***</td>
</tr>
<tr>
<td>Discounting $100, 12 months</td>
<td>.73***</td>
</tr>
<tr>
<td>Loss Aversion $6a</td>
<td>.63***</td>
</tr>
<tr>
<td>Loss Aversion $20a</td>
<td>.90***</td>
</tr>
<tr>
<td>Loss Aversion $6b</td>
<td>.62***</td>
</tr>
<tr>
<td>Loss Aversion $20b</td>
<td>.89***</td>
</tr>
<tr>
<td>Loss Aversion $20c</td>
<td>.87***</td>
</tr>
<tr>
<td>Financial Literacy 1</td>
<td></td>
</tr>
<tr>
<td>Financial Literacy 2</td>
<td></td>
</tr>
<tr>
<td>Financial Literacy 3</td>
<td></td>
</tr>
<tr>
<td>Debt Literacy 1</td>
<td></td>
</tr>
<tr>
<td>Debt Literacy 2</td>
<td></td>
</tr>
<tr>
<td>Debt Literacy 3</td>
<td></td>
</tr>
</tbody>
</table>

Inter-factor Correlations

<table>
<thead>
<tr>
<th>Temporal Discounting</th>
<th>Loss Aversion</th>
<th>Financial Literacy</th>
<th>Debt Literacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>.12†</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Loss Aversion</td>
<td></td>
<td>.41***</td>
<td></td>
</tr>
<tr>
<td>Financial Literacy</td>
<td></td>
<td>.07</td>
<td></td>
</tr>
<tr>
<td>Debt Literacy</td>
<td></td>
<td>.39***</td>
<td>.75***</td>
</tr>
</tbody>
</table>

Correlation with age

| Correlation with age | .12† | .09‡ | .47*** | .24*** |

Note. Fit indices: $\chi^2(95) = 141.73$; RMSEA = .038; CFI = .948. Age correlations were run in a model that added paths from each factor to age. ‡ < .15, † < .10, * < .05, ** < .01, *** < .001
Table 8. Multiple-group analysis for younger and older decision-making factor invariance.

<table>
<thead>
<tr>
<th>Model</th>
<th>d.f.</th>
<th>χ^2</th>
<th>RMSEA</th>
<th>CFI</th>
<th>$\Delta \chi^2 / \Delta$ d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM1: No constraints</td>
<td>196</td>
<td>243.88</td>
<td>.038</td>
<td>.940</td>
<td>-</td>
</tr>
<tr>
<td>DM2: DM1 + Equal factor loadings across age groups</td>
<td>206</td>
<td>253.37</td>
<td>.037</td>
<td>.940</td>
<td>11.11/10, $p > .35$</td>
</tr>
<tr>
<td>DM3: DM2 + Equal factor covariances</td>
<td>212</td>
<td>263.25</td>
<td>.038</td>
<td>.935</td>
<td>10.75/6, $p > .09$</td>
</tr>
<tr>
<td>DM4: DM3 + Equal factor variances</td>
<td>216</td>
<td>276.12</td>
<td>.041</td>
<td>.924</td>
<td>9.52/4, $p < .05$</td>
</tr>
<tr>
<td>DM4': DM3 + Equal factor variances except fin. Literacy</td>
<td>215</td>
<td>258.10</td>
<td>.035</td>
<td>.946</td>
<td>2.39/3, $p > .49$</td>
</tr>
</tbody>
</table>
Table 9. Standardized coefficients for decision-making factors as a function of cognitive factors.

<table>
<thead>
<tr>
<th>Decision-making Factor</th>
<th>Gf</th>
<th>Gc</th>
<th>Inhibitory Control</th>
<th>Male</th>
<th>Income</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal Discounting</td>
<td>.14†</td>
<td>.18*</td>
<td>-.07</td>
<td>.07</td>
<td>.12†</td>
<td>.16**</td>
</tr>
<tr>
<td>Loss Aversion</td>
<td>-.04</td>
<td>-.04</td>
<td>-.13*</td>
<td>.21**</td>
<td>.10†</td>
<td>.08</td>
</tr>
<tr>
<td>Financial Literacy</td>
<td>.32***</td>
<td>.63***</td>
<td>-.28***</td>
<td>.16*</td>
<td>.10</td>
<td>.35***</td>
</tr>
<tr>
<td>Debt Literacy</td>
<td>.58***</td>
<td>.51***</td>
<td>-.08</td>
<td>.37***</td>
<td>.02</td>
<td>.21**</td>
</tr>
</tbody>
</table>

Note. † < .10, * < .05, ** < .01, *** < .001
Table 10. Standardized coefficients for direct, indirect, and total effects of age on decision performance.

<table>
<thead>
<tr>
<th>Decision-making Factor</th>
<th>Indirect Effect via G_f</th>
<th>Indirect Effect via G_c</th>
<th>Indirect Effect via Inhibitory Control</th>
<th>Total Indirect Effect</th>
<th>Direct Effect of Age</th>
<th>Total Effect of Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal Discounting</td>
<td>-.08*</td>
<td>.08*</td>
<td>-.03</td>
<td>-.03</td>
<td>.11</td>
<td>.08</td>
</tr>
<tr>
<td>Loss Aversion</td>
<td>.01</td>
<td>-.03</td>
<td>.20†</td>
<td>.18</td>
<td>-.12</td>
<td>.06</td>
</tr>
<tr>
<td>Financial Literacy</td>
<td>-.23***</td>
<td>.24***</td>
<td>-.26†</td>
<td>-.24</td>
<td>.65***</td>
<td>.41***</td>
</tr>
<tr>
<td>Debt Literacy</td>
<td>-.32***</td>
<td>.24***</td>
<td>-.26†</td>
<td>-.34*</td>
<td>.53**</td>
<td>.19*</td>
</tr>
</tbody>
</table>

Note. † < .10, * < .05, ** < .01, *** < .001
Temporal discounting was measured with five choice titrators (Green, Fry, & Myerson, 1994). These titrators used both “delay” and “accelerate” frames: The delay frame presented participants with a series of choices between a fixed smaller gift certificate today and varying amounts of a larger gift certificate at a fixed time in the future, thus allowing participants to receive more money at the cost of delayed payment. The accelerate frame instead fixed the larger, future gift certificate and varied the amount of the smaller gift certificate today, thus allowing participants to accelerate payment at the cost of receiving less money. In addition to frame, we also manipulated and counterbalanced the future time (3, 4, or 12 months) and the fixed gift certificates amount ($50, $75, $100, and $115). The dependent variable for each titrator was each participant’s exponential annual discount rate, δ, as implied by the midpoint between preferring the earlier versus later payments (i.e., the indifference point). Values of δ closer to one (larger) indicated less discounting and thus more patient preferences.

Loss aversion was also measured with five choice titrators (Fehr & Goette, 2007). Each titrator presented participants with a series of choices indicating willingness to play each of a series of binary gambles with a 50% chance of winning some fixed amount ($6 or $20) and a 50% chance of losing some varying amount (between $.50 to $7 in $.50 increments or between $2 to $24 in $2 increments). Two of the titrators in the first wave were repeated without change in the fourth wave one year later. We calculated loss aversion coefficients, λ, by dividing the gain amount by the loss amount at the indifferent point (i.e., midpoint between where the participant switches from willing to play the gamble to not willing). Values of λ were reverse coded so that larger values indicated better loss neutrality.
Resistance to anchors was measured with six numerical estimation questions (e.g., distance between New York and Cairo), four of which were accompanied by anchors. For each set of three questions, participants saw one question with a high anchor (e.g., 11300 miles), one with a low anchor (e.g., 1400 miles), and one with no anchor. Questions were counterbalanced with anchor condition. We calculated standardized estimates by pooling responses across high, low, and no anchor conditions within question. Thus, the four dependent variables were the z-scores for the two low-anchor questions and reverse-coded z-scores for the two high-anchor questions. Higher values on these measures correspond to less anchoring.

Resistance to framing was measured in four different scenarios that asked participants to choose between a risky option and a sure option and varied the framing of the options as losses or gains (Tversky & Kahneman, 1981). We used the classic Asian disease problem (e.g., number of lives saved or lost), as well as variants involving potential layoffs (e.g., number of factories kept open or shut down), drought (e.g., acres of crops saved or lost) and bankruptcy (e.g., invested money saved or lost). Each participant saw either the gain version or the loss version of each scenario. Gain scenarios offered a choice between a sure but partial gain (e.g., 100% chance that 200 lives will be saved) and a risky option with chances of full gain and no gain (e.g., 33% chance that 600 lives will be saved and 67% chance that 0 lives will be saved). Loss scenarios offered a choice between a sure but partial loss (e.g., 100% chance that 400 lives will be lost) and a risky option with chances of no loss and full loss (e.g., 33% chance that 0 lives will be lost and 67% chance that 600 lives will be lost). Because these framings provide identical choices, Expected Utility maximizers should choose the same option under either framing, but Prospect Theory predicts that people susceptible to the framing will choose the sure option in the gain frame and the risky option in the loss frame. Susceptibility to framing is thus a binary measure of whether, for each pair of scenarios, choices follow consistent risk preferences regardless of framing (1 if either both risk-averse or both risk-seeking) or not (0).

Financial and debt literacy were measured using a single six-question scale composed of three financial literacy questions (Lusardi & Mitchell, 2006) designed to assess knowledge of
fundamental economic concepts and three debt literacy questions (Lusardi & Tufano, 2009) designed to assess knowledge of compound interest and credit card debt (see Table S1).

Table S1. Financial and debt literacy questions.

FL1. Imagine that the interest rate on your savings account was 1% per year and inflation was 2% per year. After 1 year, would you be able to buy more than, exactly the same as, or less than today with the money in this account?

- More than today
- Exactly the same as today
- Less than today
- Do not know

FL2. Do you think that buying a single company stock usually provides a return that is more safe, equally safe, or less safe than the return on a stock mutual fund?

- More safe return than a stock mutual fund
- Equally safe return as a stock mutual fund
- Less safe return than a stock mutual fund
- Do not know

FL3. Is using money in a bank savings account to pay off credit card debt usually a good or a bad idea?

- Good idea
- Bad idea
- Do not know

DL1. Suppose you owe $1000 on your credit card and the interest rate you are charged is 20% per year compounded annually. If you didn't pay anything off, at this interest rate, how many years would it take for the amount you owe to double?

- 2 years
- Less than 5 years
- More than 5 but less than 10 years
- More than 10 years
- Do not know

DL2. You owe $3,000 on your credit card. You pay a minimum payment of $30 each month. At an Annual Percentage Rate of 12% (or 1% per month), how many years would it take to eliminate your credit card debt if you made no additional new charges?

- Less than 5 years
- Between 5 and 10 years
- Between 10 and 15 years
- Never, you will continue to be in debt
- Do not know

DL3. You purchase an appliance which costs $1,000. To pay for this appliance, you are given the following two options: a) pay 12 monthly installments of $100 each, b) borrow at a 20% annual interest rate and pay back $1,200 a year from now. Which is the more advantageous offer?

- Option (A)
- Option (B)
- They are the same
- Do not know
Cognitive Measures

Fluid intelligence

Our most widely recognized measure of fluid intelligence is the Raven’s Progressive Matrices task (Raven, 1962), a non-verbal test of inductive and analytic reasoning. The version we used, adapted from Salthouse, Pink and Tucker-Drop (2008) consisted of patterns in the form of 3x3 matrices with one cell missing. Participants had to determine the underlying rules that produce the pattern of rows and columns in the matrix which of the eight choice options correctly completed the pattern. Participants had 10 minutes to answer up to 18 matrices. Each item was presented on its own page and participants could choose to skip a question by selecting “no answer” but could not return to earlier items. Performance on this task was measured by the number of correct responses (0-18) with no penalty for incorrect responses.

Letter Sets (Ekstrom, French, Harman, & Dermen, 1976; Thurstone, 1962) is another measure of inductive and reasoning ability. The version of the task used in this study was also adapted from Salthouse et al. (2008). In this task, participants were presented with five sets of letters (e.g., NOPQ, DEFL, ABCD, HIJK, and UVWX) and they had to find the rule that related four of the five sets by checking the one which did not fit that rule (e.g., DEFL). Participants had 10 minutes to complete up to 15 items. As with the Raven Progressive Matrices, each item was presented on its own page and a “no answer” option allowed participants to skip items. The score for this task was calculated by the number of correct responses with no penalty for incorrect responses.

Number Series (Thurstone, 1962) is yet another measure of inductive and reasoning ability with particular emphasis on quantitative reasoning. The version we have used in this study is a block adaptive test developed by (McArdle & Woodcock, 2009) for the HRS 2010. Each item consisted of a series of numbers (e.g., 23, 26, 30, 35, ___), and participants identified the number that correctly completed the series. All participants saw the same three items in the first block. The number of items answered correctly determined the difficulty of the three items in a second block. Thus, each participant completed six items in total, and a Rasch score was
calculated based on which second block the participant completed and how many answers they got right in each block.

The Cognitive Reflection Test (CRT; Frederick, 2005; Frederick, Loewenstein, & O'Donoghue, 2002) consists of three mathematical questions that yield quick, impulsive, but incorrect first responses, which need to be inhibited to arrive at the correct answer. According to Frederick, the “three items on the CRT are ‘easy’ in the sense that their solution is easily understood when explained, yet reaching the correct answer often requires the suppression of an erroneous answer that springs ‘impulsively’ to mind” (Frederick, 2005, p. 27). The dependent variable used is the number of correct responses (0-3) with no penalty for incorrect responses.

Numeracy (Lipkus, Samsa, & Rimer, 2001) is the ability to understand probability and mathematical concepts. The numeracy task we used in our study consists of 11 questions that test comprehension and manipulation of proportions, percentages, and probabilities. The dependent variable used is the number of correct responses (0-11) with no penalty for incorrect responses.

Crystallized intelligence

Shipley’s vocabulary (Zachary, 1986) is a synonym vocabulary task that measures vocabulary knowledge. In our version, adapted from CREATE’s Common Core Battery of Measures (Czaja, Charness, Dijkstra, et al., 2006; Czaja, Charness, Fisk, et al., 2006), participants choose from among four words the one most similar in meaning to a target word. Participants had 10 minutes to complete up to 40 items split into two screens of 20 items each. In this task, a visible timer counted down on the upper left hand corner of the computer screen. The dependent measure used for this task is the number of correct responses (0-40) with no penalty for incorrect responses.

Antonym vocabulary also measures vocabulary knowledge, using items developed by Salthouse (1993). In contrast to the Shipley’s synonym vocabulary however, in this task participants choose from among five words the one most nearly opposite in meaning to a target word. Participants had five minutes to complete up to ten items, with a visible timer. Each item was presented on its own page but participants could choose to skip an item by selecting “no
answer”. Their score was the number of correct responses (0-10) with no penalty for incorrect responses.

The Information task (WAIS-III) (Wechsler, 1997) also adapted from CREATE (Czaja, Charness, Dijkstra, et al., 2006; Czaja, Charness, Fisk, et al., 2006) consisted of questions that measure general factual knowledge about events, objects, places, and people. Online administration required participants to read the questions on the computer screen and type their responses rather than having the questions read to them by a tester and answering verbally. We used the acceptable responses for each item as listed in the CREATE manual (Czaja, Charness, Dijkstra, et al., 2006) to determine whether an answer is correct. Because we could not prompt participants to give further details for a question, we could only code answers as correct (1) or incorrect (0) (instead of the original 0, 1, 2 scoring). Participants answered 28 questions without time restriction. The dependent measure used for this task is the number of correct responses (0-28) with no penalty for incorrect responses.

Inhibitory Control

The Spatial 1-back (Spatial Speed Match\(^1\)) task belongs to a family of N-back tasks that measure the capacity to update and actively manipulate working memory contents. The version of the task we employed in our study tests visuo-spatial information processing. Participants were presented with three circles, two white and one blue, which formed a triangle on the screen. In each trial, they saw the same triangle but the blue circle could appear in one of the other corners of the triangle. Therefore, participants had to evaluate if the location of the blue circle was had changed from the trial before (1-back). As the accuracy level on this task was very high for young and old people, the dependent measure we used is participants’ average reaction time.

The Stroop (Color Match) task measures cognitive flexibility and response inhibition capacity (Stroop, 1935). In the version used in this study, each trial displayed two words on the screen. The word on the left appeared in black font and indicated the name of a color (i.e., blue,

\(^1\) All inhibitory control tasks were adapted from tasks developed by Lumos Labs (Lumosity.com). The name of each task in parentheses is the name for the task on the Lumosity website.
green, red, etc.). The word on the right was also the name of a color and appeared in either the same color font as the semantic value of the color word on the left of the screen (e.g., congruent trials) or in a different color font (e.g., incongruent trials). Participants judged as quickly as possible if the semantic value of the word on the left corresponded to the font color of the word on the right. Participants had two minutes to finish as many trials as possible. The dependent measure was the difference in reaction times between incongruent and congruent trials, coded such that higher values correspond to better inhibition capacity.

The *Flanker* (Lost in Migration) task measures focus and resistance to interference. In this task, participants see a central item in a certain orientation flanked by distracting items in either the same or different orientations. In the version used in this study, participants saw five birds flying in a “V” shape. The task was to report the direction the middle bird (target) was flying by pressing one of the four arrow keys. In congruent trials, the other four birds were all flying in the same direction as the target and, in incongruent trials, they were all flying in a different direction. Participants had 45 seconds to finish as many trials as possible. The dependent measure was the difference in reaction times between incongruent and congruent trials, coded such that higher values correspond to better inhibition capacity.
REFERENCES

